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Faced with a dangerous epidemic humans will spontaneously social distance to
reduce their risk of infection at a socioeconomic cost. Compartmentalized epidemic
models have been extended to include this endogenous decision making: Individuals
choose their behavior to optimize a utility function, self-consistently giving rise to
population behavior. Here, we study the properties of the resulting Nash equilibria,
in which no member of the population can gain an advantage by unilaterally adopting
different behavior. We leverage an analytic solution that yields fully time-dependent
rational population behavior to obtain, 1) a simple relationship between rational social
distancing behavior and the current number of infections; 2) scaling results for how the
infection peak and number of total cases depend on the cost of contracting the disease;
3) characteristic infection costs that divide regimes of strong and weak behavioral
response; 4) a closed form expression for the value of the utility. We discuss how these
analytic results provide a deep and intuitive understanding of the disease dynamics,
useful for both individuals and policymakers. In particular, the relationship between
social distancing and infections represents a heuristic that could be communicated to
the population to encourage, or “bootstrap,” rational behavior.

epidemiology | control theory | mean-field games | game theory | mathematical modeling

Throughout history, epidemics caused by infectious diseases have caused considerable
harm to humans. Early models of the epidemic spread of infectious disease (1) treated the
behavior of the population as unaffected by the threat of the disease, and thus constant.
More recent studies sometimes assume individuals are able to adjust their behavior in
reaction to the threat of an epidemic (2-17). At first, the behavioral changes exhibited
by populations during an epidemic were modeled ad hoc, with behaviors determined by
some arbitrary relationship, e.g., a function of the current disease prevalence (2, 4, 6, 8).
Later, economics-based approaches were developed in which individuals were able to
weigh the costs and benefits of outcomes in order to make choices about their behavior.
Crucially, this behavior can be highly dynamic and time-dependent: they can reduce their
social activity when infections are high, in order to reduce the probability of becoming
infected themselves, provided that the avoided health costs outweigh the social and
economic costs caused by the reduction of their activity.

A common assumption is that individual agents act rationally, i.e., to maximize
an objective function or economic utility (3). This remains one of the fundamental
assumptions of modern economic theory despite its limitations (18). Rational individuals,
who aim to maximize their individual objective function, would choose to target a Nash
equilibrium (3, 5, 7, 14, 19, 20) rather than the global utility maximum, which instead
requires a coordinated effort to maximize a collective objective function (12, 21-23).
Although not the focus of the present work we note that it is possible to bring a Nash
equilibrium into alignment with the global optimum ((3, 21, 24-26) and the chapter by
Mark Gersovitz in ref. 4), e.g., via tax and subsidy incentives (27) which can be designed
to bias rational individual behavior appropriately. Even with government intervention,
it is however challenging to target complete eradication of a disease (see ref. 3 and the
chapter by Mark Gersovitz in ref. 4).

Here, we formulate a simple compartmental SIR disease dynamics in which the fully
time-dependent social activity of the population affects the disease transmission rate. The
population behavior arises from the choice of behavior made by individuals. We analyze
this decision making problem as a mean-field game for a representative individual reacting
to a population behavior, which afterward is made self-consistent with the behavior of
the individual. This approach requires us to define the individual’s utility: we focus on
the case where the cost of infection is constant and where the government takes no role
in directing the response to the epidemic. This situation has been already discussed, e.g.,
refs. 5, 12, and 19 among many others, but only using numerical solutions. We assume
that the cost of social distancing is quadratic in the strength of behavioral modification
and that it is paid by all compartments. This is akin to assuming largely asymptomatic but
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costly infections. Fortuitously, this allows us to exactly calculate
the fully time-dependent social distancing behavior during an
epidemic corresponding to the Nash equilibrium of such a mean-
field game. Since it is extremely challenging to eradicate infectious
diseases, we focus here on scenarios that ultimately lead to herd
immunity.

Compartmental models like ours can be extended to more
accurately represent the complexity of epidemics and the systems
in which they occur, such as birth and death dynamics, additional
compartment types with different risk and behavior profiles (19,
28-34), seasonal effects (35), waning immunity (34, 36), e.g., due
to new variants (37), the dynamics of information, such as word-
of-mouth propagation or the imitation of behavior (4), as well as
spatial, transmission, or behavioral heterogeneity (4, 30, 38-42).
Other approaches feature spatial (43) and temporal networks (44,
45), and/or agent-based models (46-49). Others have worked
to incorporate uncertainty and noise, by considering stochastic
control (50-54), decision making under uncertainty (55, 56)
and by understanding the robustness of control (57-59). Model
structure, epidemiological properties, or the effectiveness of
interventions can be inferred from observed data (60—64). We do
not consider any of the above here, nor policy interventions such
as vaccination and treatment strategies (3, 4, 6, 8, 9, 14, 16, 22,
34, 47, 49, 65-73), or isolation, testing, and active case-tracing
strategies (74—77). We also ignore the situation where a vaccine
becomes available during the epidemic. While the early arrival
of a vaccine would have consequences for both equilibrium and
globally optimal behavior (5, 12, 20, 78), this lies outside of the
scope of this work. Finally, we also remark on the intriguing possi-
bility of allowing individual opinions to directly influence policy
makers (79). Even the most sophisticated models struggle to make
quantitative predictions during epidemics. The strength of simple
compartmental modelslike ours is that while they are highly ideal-
ized, they provide a deep and intuitive qualitative understanding.

Nash equilibria are widely believed to occur within such
idealized models that incorporate endogenous behavior during
epidemics. However, until this work, solutions have only been
accessible numerically. This is because the problem is intrinsically
nonlinear, both at the level of the epidemiological dynamics and
the objective function, leading to nonlinear control equations.
Here, we provide an analytic solution to the nonlinear time-
dependent equilibrium control equations for social distancing
during an epidemic. This also demonstrates the existence of
such a Nash equilibrium. In the limit of vanishing infection
cost our results trivially recover the known analytic solutions
for compartment models with constant basic reproduction
number (1, 80-83), i.e., without endogenous rational behavior.
We believe that Nash equilibria of idealized epidemic models
provide a point of reference for understanding self-organized,
self-interested behavior during an epidemic.

Epidemic Dynamics

We use a standard SIR compartmentalized model (1) for the
epidemic. The population is divided into susceptible, infected
and recovered compartments, the latter implicitly including
fatalities. The compartments evolve over time as

d
—s=—ksi

dt
d
4., 1
dtl ksi—i (1]
d
dtr

:i,
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The time dependence of 5(¢), i(¢), 7(¢) and k() is omitted for
brevity. We normalize the compartments, 1 = s+ i + 7. The
model contains a single timescale which expresses the duration of
an infection, and we have rescaled the equations so that time # is
measured in units of this single timescale. The initial conditions
are set as 5(0) = 5o, #(0) = 4o, 7(0) = 7y, with s, o, 7o > 0 and
so + 7o + ro = 1. In all figures, we arbitrarily select a time origin
t = 0, where the epidemic is in its very early stages according to
ro=io/(Ry —1) = 10"% with o = 1 — ip — .

The population’s average social activity behavior is encoded
in the current transmission rate, assumed to satisfy #(¢) > 0
although our analytic results later suggest a stronger bound
k() > 1. We assume that the disease exhibits a natural level
of activity in the absence of any behavioral modification that is
a constant known as the basic reproduction number Ry. Below
we use the case k() = Ry to establish a nonbehavioral baseline
dynamics for comparison.

Nash Equilibrium Behavior

In order to study self-organized behavior, we imagine an
average individual making decisions about their own behavior.
This represents a mean-field game (84, 85), for the Nash
equilibrium of which a set of ordinary differential equations can
be straightforwardly derived (14, 86).

The individual’s effect on the epidemic is negligible but they
can influence their own fate by selecting a strategy «(¢#) > 0
which it is initially assumed can differ from the population-
averaged strategy k(¢). The probabilities that an individual is in
each of the compartments evolve over time according to

d .

—y, = —KWY,i

dtw "4

d .

AL (2]
¢

Lowering x'(¢) directly increases the probability of the individual
remaining susceptible and reduces their probability of becoming
infectious. While these equations are similar to Eq. 1, they express
the fact that the individual, while susceptible, can only be infected
by the population (with fraction of infected 7) and not by itself.

We assume that an individual has rational interests that can
be captured by an objective function or utility. In general this
will depend on both their own and the population behaviors,
U(x(t), k(z)). The individual seeks to maximize this objective
function. Assuming that the population consists of identical
individuals, a Nash equilibrium exists if there is a strategy
k = k(¢), adopted by the population, and the individual
cannot improve their outcome by unilaterally deviating from
the behavior «,

U(k(t), k(2)) < U(x(t), k(2)), foranyi(z). [3]

In order to find this Nash strategy one first maximizes U(k, )
over k¥ for an arbitrary, exogenous k (14). This constitutes
a standard constrained optimization problem. To make the
strategy self-consistent, one then assumes that all individuals
in the population would optimize their behavior in the same
way, and therefore # = k. This then automatically results in
W, = 5, y; = i with dynamics that corresponds to the Nash
equilibrium.

In this work, we focus on an idealized individual objective
function or utility U with; see ref. 26,
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U / " e+ Up, [4]
0

u= —ay; — &(k — Ry)*. [5]

The integral is truncated at a final time 7 (more on this
below). We neglect economic discounting of events at later times.
The average infection cost is given by @ (this also includes the
cost of death) with @ > 0. The social and financial costs of
social distancing are parameterized by a constant £ > 0. In
what follows, we choose to work in units of utility in which
& = 1, without loss of generality. The quadratic form of this
social distancing term encodes that it is costly to deviate from
one’s default behavior and ensures that an individual would
naturally select behavior corresponding to ¥ = Ry if there were
no epidemic (or infection bore no cost). We make the common
choice of truncating the utility integral at a final time # at
which a perfect vaccine becomes available, e.g., see refs. 5, 12,
29, and 78. Introducing such a final time helps in obtaining a
well-stated boundary value problem for the analytic solution.
We assume that at that time the susceptible compartment
becomes completely and perfectly vaccinated, i.e., the fraction
of susceptibles instantaneously drops to 0 at # = #7. However,
since infections are not cured by a vaccination, the fraction of
the population that is infectious at vaccination time still has
to recover, which happens exponentially over time. In order to
include this contribution to the utility we integrate the infection
cost accumulated for 7 > ¢ into the term Uy = —ay;(#y), see
Materials and Methods for a brief calculation.

If the vaccination time #; is very large, then the population
reaches herd immunity before any vaccine arrives and i(#7) — 0.
We focus on this situation, for which we analytically calculate
the social distancing behavior and resulting epidemic dynamics.
If #7 is small enough it can have a qualitative effect on rational
decision-making (5, 12, 78): for any given time, social distancing
tends to be stronger the sooner a vaccination is expected to
arrive. Simply speaking, the smaller #¢ is, the smaller is the
maximum cost of suppressing the disease over the duration of
the epidemic. A rough criterion for when the vaccination time
becomes relevant for behavioral modification is thus given when
the maximum cost of suppressing the disease over the duration of
the epidemic becomes comparable to the infection cost, & ~ Ré 7
for our utility. Therefore, one would expect social distancing to
become nonnegligibly affected by the vaccination event when
tr < a/(R?). However, this scenario lies outside of the scope of
this work as it severely complicates the analysis. Therefore, we
choose # finite but large enough such that i(#7) — 0 holds self-
consistently. It is an open question whether the analytic solution
provided here can be generalized for short times .

Since the utility function is convex, we expect that the
optimization problem has a (unique) solution. We directly
demonstrate uniqueness and existence by calculating the analytic
solution to this problem below.

Discussion of the Utility Function and Comparison to Other
Work. Our approach is most similar to refs. 5, 12, 19, 26, 78,
and 87. In the following, we discuss the main similarities and
differences of our work to theirs.

Our assumption that the infection cost « is constant is a very
common one, e.g., refs. 5, 12, 78, and 87. In contrast, there
are examples where this is not a good assumption, e.g., when
hospital capacity is limited the infection cost can depend on the
prevalence of infections in the population. Including this effect
would tend to increase social distancing efforts in order to limit
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the number of infections at any given time; see, e.g., ref. 26 for
details.

It is very typical in control theory to assume quadratic control
costs, because it has the advantage of being the most simple
convex form. Using this for the social distancing cost ensures
that k = Ry for a disease of negligible cost. This choice was also
made by, e.g., Makris and Toxvaerd (12). One possible point
of criticism for using a quadratic social distancing cost is that it
stays finite for k = 0. This allows the population to unrealistically
avoid all new infections for a finite cost per time unit. This issue
could be addressed by instead using a functional form for the
social distancing cost that diverges as k — 0 (5). However,
the solutions studied here respect k > 1 (Eq. 31) so the lack
of a divergence is not a concern here. If #/ were chosen to be
short enough so as to incentivize complete lockdown scenarios,
a divergent control cost would instead have to be considered.

In other work, the social distancing term is often assumed
to be proportional to y;, e.g., refs. 5 and 78. This assumption
corresponds to the following situation: a) Individuals know well
in which compartment they currently reside. b) Individuals only
social distance as long as they are susceptible, i.e., when they
are still able to avoid infection. c¢) The behavior of infected
individuals is constant. Either, infected individuals know that
they cannot positively affect their own fate by continuing to
social distance and thus do not do so, or, infected individuals
show some constant social distancing behavior that is absorbed
into the definition of Ry. d) Recovered individuals know that
they can safely return to their pre-epidemic lifestyle and thus
avoid excessive social distancing costs.

Instead, we chose to use a udility that does not include a
v, factor in the social distancing term for simplicity. Indeed
this simplification allows the derivation of the analytic solution
that we identify. Briefly, this corresponds to the case in which
individuals know that becoming infected would be very costly
on average but are uncertain about which compartment they
find themselves in. This is the case when many infections are
asymptomatic and many individuals believe they are susceptible
even when recovered (a similar assumption is made in ref. 19 who
considers an asymptomatic stage of the disease that sometimes
turns symptomatic). At the same time, we have assumed that the
status of the epidemic is well known, so that individuals are able
to make informed decisions while being unclear about their own
status. A possible scenario is thus one in which costly disease
symptoms are either delayed and/or rare, so that individuals
would be uncertain about their infection status while wanting
to avoid infection. In this scenario, we are assuming that there
is unbiased testing of population infection levels such that the
course of the disease remains predictable, such as testing sewage
(88). Indeed, in the recent COVID-19 epidemic, a large fraction
of individuals were asymptomatic, while costs arising from an
infection, including death and long-COVID, could be very high.
There are many other examples of diseases that fall into this
class, e.g., HIV, Epstein—Barr, HPV, or Herpes; or diseases for
which there are rare genetic susceptibilities (89). In all these
cases, the individuals can remain unaware that they were infected
indefinitely, while the costs of an infection can be very large. Since
it can be costly to have recovered individuals social distance in
perpetuity, a government would likely seek to institute large-
scale testing to identify recovered individuals in the population
so that they could return to a pre-epidemic activity level (29).
We also must neglect that the utility/cost of social behavior for
an individual would depend on how active other members of the
population are, which may lead to the existence of multiple Nash

equilibria (19).

https://doi.org/10.1073/pnas.2409362122
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One might ask what the practical difference between a udility
with and a utility without the y; factor would be. In fact, we find
that the behavior and epidemic trajectories obtained in this work
are qualitatively comparable to what one would (numerically)
obtain assuming that all infections are immediately symptomatic,
e.g., see refs. 5 and 26. The main qualitative difference is that
a utility in which social distancing is performed only by the
susceptible compartment would predict that the most stringent
social distancing is performed (at least slightly) after the epidemic
has already peaked and when the susceptible compartment is
already strongly reduced. Instead, we find here that the strongest
reduction in social activity is expected exactly at the peak of the
epidemic.

Our approach neglects any possible effects of government
intervention which would for instance allow targeting utilitarian
behavior. We have been unable to extend the analytic solution to
the presence of state intervention so far. Nevertheless, the insights
gained from the analytic solution may be useful in the design of
government interventions.

Restatement of the Problem as a Boundary Value Problem. We
use a standard Hamiltonian/Lagrangian approach (14, 86), which
in optimal control theory is referred to as Pontryagin’s maximum
principle (90), to calculate the optimal behavior of an individual
K in response to an exogenous behavior £ and the corresponding
course of the epidemic. This approach is an exact reformulation
of a full variational analysis of the individual’s behavior and
epidemic trajectory given an exogenous population behavior.
For details, see for instance refs. 14 and 86 or Supplementary
Information of ref. 26. It allows for exactly reformulating the
optimization problem as a boundary value problem which is
generated from an auxiliary function, the Hamiltonian. The
Hamiltonian for the individual can be expressed by

dWS dl//z'
.
= u+ v(—ky,i) + vi(Kysi — y;)

=—ay; — (k — Ro)* — (v — v;)kwsi — viws.  [6]

H=u+ v

The Lagrange fields »,(¢) and v;(#) express the expected value
of being in the corresponding compartment at that point in time
(14). They enforce the constraint of the dynamics to Eq. 2. Their
equations of motion are

d oH
Zvj = _al//; = (v, — vl')Kz' (71
2= ey ]
—vi=——— =a+u;
dtv y; !
with boundary conditions
dUy aUf
v(tr) = —=— =0,, v(tr) = = —a. [9]
(%) Bus (%) T

Given the exogenous course of the epidemic in the population,
the individual can optimize their own utility by choosing the
strategy that satisfies 0 = 9 H /9« . From this we obtain k = Ry —
%( v; — v; )Wsi. Assuming that the population consists of identical
individuals, they all rationally seek to optimize their personal
utility in the same way. Thus they all choose the same strategy
and we can conclude that the average population behavior must
be self-consistently given by £(¢) = x(¢). Hence, this gives rise

40f 9 https://doi.org/10.1073/pnas.2409362122

to a Nash equilibrium. Then, naturally also s = y; and i = y;,
and

1
k =K = RO — z(l/x - Uj)Si. [10]

The variational approach as stated only yields conditions
sufficient to identify extrema. To confirm that a solution is a

2 2
maximum, %Tif < 0 is required. Here, we find %le =-2<0.

Analytic Solution

The Nash equilibrium £(#) optimizing the utility Eq. 4 is given
by the solution of Eq. 1, Egs. 7-9, in conjunction with the
optimality condition Eq. 10. From here, we calculate the analytic
solution for this set of equations.

First, we work with the integrated fraction of infected cases up
to time 7, i.e., the fraction of recovered cases 7, defined as

r :/ i(f)dt + ro [11]
0

noting that i = dr/dt. Because 7(¢) is monotonic, it can be used
as a rescaling of time. Thus we can rely on a one-to-one mapping
between # and 7 for all time-dependent quantities, for instance
between s(¢) and s(#). This or similar reparameterizations of
time are a common technique in the analysis of epidemic
compartmental models, e.g., see refs. 80-82 and 91. What is
innovative here is that we leverage this rescaling for a fully time-
dependent population behavior 4(%).

The second transformation involves defining 4K /dr = k i,
hence K obeys

K(r) = /r k(r)dy . [12]
0
Eq. 1 then lead to ds/dr = —s dK /dr which integrates to
5= soe_K(r). [13]
Using 1 = s + 7 + r, we obtain directly
i=1—r—spe K0, [14]
Since i = dr/dt, we can integrate this equation to obtain

4 ar’
F(r) = —— =1t h =F . 1
(r) /r o soe_K(’,) t hence r (z). [15]

0

Here, we exploit that this mapping between 7 and # is valid for
arbitrarily time-dependent population behavior 4(z). We recall
our assumption that # is large enough that #(#7) — 0. In this
limit, Eq. 14 simplifies and the cumulative total of infections
reaches its final value given by the root of

e —I—soe_K(rf) =1. [16]

Egs. 11-16 above hold irrespective of the form of the objective
function.

In the following, we evaluate K, and hence s, for the particular
choice and structure of Eq. 5. Concerning the Lagrange fields, we

can see directly from Eq. 8 that v;(#) = —a, whereas v; follows
from Eq. 7
d
Zi/y = (U;—‘r(l)z[(. [17]
pnas.org
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Integrating we obtain
50
vx—&—a:,ue[(:y—. [18]
s

with a constant 4. From the boundary condition #;(#7) = 0 we
can conclude

i

s

V= —a [19]
with s¢ = s(#r). The quantity »; can be interpreted as the
expected future infection cost for a susceptible individual, since
the probability that they will still become infected is (s — s7) /s at
a cost —a. The optimal behavior is then given by Eq. 10

b=Ry— 2L [20]

This is tremendously simple: the equilibrium strength of social
distancing #— Ry is proportional to both the number of infectious
cases and the cost of infection at any given time; see Fig. 1C.

With s = 506_1((7), we have

9 8K

e i —y 21
ar ! or ! [21]
and therefore, inserting Eq. 20 and i =1 — r — s,
d as
8_:: = —s[Ry — Tf(l —r—ys)]

= —sla + br + bs]. [22]

with 2 = Ry — b and & = asp/2. This has an analytic solution
that satisfies s(r — 79) — 5o

exp [—%(7 —10)(2a+ b(r + ro))]

Lo Je e[ el ] (B[ 2bin ] — mef[ <]

s(r) =

[23]
A 1.0F B
» 0.8} 0
(0]
| 50
50 100
5 04l p
n
02F
%0750 0.2 04 0.6 0.8 1.0
Recovered r
B 04F C OF
&1
502 |
£ = 2t
000 0.5 1.0 300 0.2 0.4

Susceptible s Infectious i

Fig. 1. Direct plots of the analytic solution. (A) The analytic solution of the
Nash equilibrium social distancing problem as obtained in Eq. 23 as a function
of the recovered r for an exemplary range of infection costs a and Ry = 4.
Initial conditions here and in all following figures are set to ro = 106 and
ig=3- 10~6. (B) The fraction of infectious i as a function of the susceptible
s for the same range of «. (C) Deviation of the social distancing behavior k
from the pre-epidemic default Ry as a function of i/, emphasizing their linear
relationship as established in Eq. 20.
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Fig. 2. Analytic solution as a function of time. (A) Equilibrium social activity
behavior of the population k(t) and corresponding dynamics of the disease
(B) s and (C) i for an exemplary range of infection costs a« and Ry = 4. Since
infections incur a cost, the equilibrium behavior seeks to avoid excessive
infections by self-organized social distancing. The higher the cost, the more
reduced social activity kK becomes.

Using 7¢ = 1 — s(7¢), we can self-consistently determine 7¢ and
thus obtain the solution. We show the result of Eq. 23 for a
range of infection costs @ in Fig. 14. The analytic solution for
the infectious compartment #(r) = 1 — 7 — 5(r) can be plotted
in a natural way on the s—i plane; see Fig. 1B.

In our approach, time is parameterized as Eq. 15, which can
easily be evaluated numerically. The analytic solution can then
be plotted in the typical way, Fig. 2.

Results

The central result of this work is that we have been able to
obtain a full analytic solution to the epidemic dynamics in
Eq. 23 and that it arises from a simple expression for the fully
time-dependent social distancing behavior that can be expected
under rational decision making, Eq. 20. This equation formalizes
an intuitively reasonable result: the higher the infection cost
a, the stronger is the incentive to reduce social activity and
hence 4, see Fig. 2. The stronger the reduction in 4, the more
slowly the epidemic progresses, the lower the peak infection
levels are, and the lower the total number of cases 1 — s
becomes.

In what follows, we analyze the epidemic using two key
quantities, the excess cases € and the peak of the epidemic
max(). For tf — 00, herd immunity is always reached. The
final number of susceptibles then always satisfies sy < 1/Ry, with
1/Ry the minimum number of cases for which herd immunity is
guaranteed. The cases in excess of this threshold are defined as

821/R0—{f. [24]
We will calculate £ and max(7) in two limiting cases: 1) The

Nonbehavioral limit in which there is no perceived infection
cost @ = 0. In this case, there is no reason to modify one’s

https://doi.org/10.1073/pnas.2409362122
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Fig. 3. Scaling. (A) Excess cases e(a, Rg) Vvs. infection cost « for a range of basic reproduction numbers Ry. The high infection cost asymptotes, see Eq. 29, are
shown as dashed lines and the crossover costs agy, see Eq. 32, as black stars. Inset: The data collapse onto the low and high infection cost asymptotes by
rescaling the cost « with the crossover cost a3y, see Eq. 32, while rescaling (a, Ry) with its nonbehavioral limit, see Eq. 27. (B) The infection peak jvs. a for a

range of Ry. The high infection cost asymptotes, see Eq. 30, are shown as dashed lines and the crossover costs a*
collapse onto the low and high infection cost asymptotes by rescaling the cost a with the crossover cost a*

nonbehavioral limit, see Eq. 28.

behavior, £ = Ry; see purple lines in Figs. 1 and 2. 2) The high-
infection-cost asymptote in which infection costs are very high,
a/R% > 1. By matching these solutions, we will obtain crossover
costs between these scaling results.

Nonbehavioral Limit. For this edge case only, the analytic
solution was known previously (1, 80-83). We recover it in
our notation as follows. Since @ = 0, Eq. 22 is solved by

s(r) = spe Ror=r0) [25]
Its limit sy = ¢~ Ro(1=5=r0) yields
5 = =W (—soRoe 0" /R, [26]

with W the principal branch of the Lambert W function, which
is also called the product logarithm and is defined as the inverse
of the function we” (92). Hence,

£ = (1+ W(—soRoe0=1Y))/R,. [27]

The peak of the epidemic 7 = max(7) = i(?) occurs at the
time 7 for which di/dt = 0 and thus s(#) = 1/Ro; see Eq. 1.
Inserting this and » = 1 — s — 7 into Eq. 25, we obtain

7=max(i) = 1 —ry — (1 + In(s0Ro))/Ro- [28]

High-Infection-Cost Asymptote. The final number of cases sy can

be calculated in the limit of large a >> R2, where sp=1 /Ry — €
with € small and assuming that sop > 1/Ry. We obtain

£ =2R/a [29]

from an expansion of Eq. 23 in both 1/a and € small and by
matching order by order. This result describes the full solution
well at high a; see Fig. 34. For the infection peak, we obtain in
the same limit, see Materials and Methods,

7 = max(i) = 2Ry(Ry — 1)/a, [30]

which also fits the full solution well at high a; see Fig. 3B. In
the limit @ — 00 we combine Egs. 20, 29, and 30 and see that
asymptotically

asr . 3
/€=R0—TZER()—(I—ZRO/(X)(R()—I)21 [31]
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I Eq. 33, as gray stars. Inset: The data

Deak! Eq. 33, while rescaling the peak height with its

Scaling and Phase Diagram. It can be illuminating to calculate
the approximate infection cost at which self-organized behavior
starts to play a significant role. For this purpose, we identify
the costs at which low and high infection cost asymptotes meet.
We find two such crossover costs, one for excess cases, a*

ex’
and one for the infection peak, a7, ,, as follows. Observing
pea

in Fig. 34 that the excess cases are roughly constant at low a
and therefore well described by the nonbehavioral limit, we
obtain the crossover cost a, at which the nonbehavioral and
high infection cost asymptotes of Eqs. 27 and 29, respectively,
match

o, = 2R/ (1 +( W(—soRoeRO(’O_l))) .32

For the infection peak, we similarly obtain a crossover cost a;m "
from matching Eqs. 28 and 30

200 )
strong ag,
150 social distancing
o}
@
[e]
(6]
_5 100
©
(%]
E
50
negligible
social distancing
o [

1.0 15 2.0 2.5 3.0 35 4.0 45
Basic reproduction number Ry

Fig. 4. Behavioral response. Characterization of the Nash equilibrium re-
sponse in the Rgy—a parameter space. On the high Ry—low-a side of the line,
the behavior is well represented by the nonbehavioral limit, in which it is not
rational to significantly modify one’s behavior. On the low Ry—high infection
cost side, it is rational to strongly modify one’s behavior. The lines describing
the crossover are given by the critical costs o, for the transition in the excess
cases, see Eq. 32, and/or a,:)eak for the transition in the infection peak, see

Eq. 33. The parameter values used for some of the curves in Figs. 1 and 2 are
marked by analogously colored dots.
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Fig. 5. Cost of the epidemic. Total epidemic cost relative to the cost of an
infection, —U/e, as a function of infection cost « under equilibrium social
distancing. The corresponding nonbehavioral, Eq. 35, and high-infection-cost
asymptotes, Eq. 36, are indicated by dotted and dashed lines, respectively.

@ = 2R3 (Ro — 1)/ (Ro(1 = ro) = 1 = In(s0Ro)) . [33]

These crossover values and the nonbehavioral limits for € and
max(7) can be used to achieve complete collapse of € and max(7)
onto master curves; see Fig. 3 B and D, respectively.

Both crossover values, (x;mk and «,, determine different

aspects of the “phase diagram” of social distancing; see Fig. 4.

For Ry = 4, (x;mk ~ 59 and &, ~ 139. The crossover a;m/e

for the infection peak describes a behavioral transition in the
most intuitive signal of an epidemic. The infection peak also
corresponds to the most restrictive value of social distancing; see
Eq. 20. For @ < a7, , social distancing is extremely weak; see,

e.g., for @ = 50 in Fig. 2A4. Social distancing is ultimately aimed

at reducing excess cases. For a* , < a < a*, there is social
peak ex

distancing, but still only on a relatively short time frame; see
the data for @ = 100 in Fig. 24. It starts to visibly affect the
peak of the epidemic but not its duration, Fig. 2C, and has a
very limited effect on the total of cases, Fig. 2B. This can be
viewed as the consequence of the weak relationship between the
drop in infectivity and excess cases. Only for @ > a7, is there
considerable social distancing for an extended time, which then
achieves a significant reduction in excess cases.

utility. The udility, Eq. 4, evaluated at the equilibrium behavior
can be directly calculated using the analytic solution

U=—a [rf —r+ % (Ro(rp — o) + ln(s]r/xo)):l [34]

noting that s and 7 = 1 — 57 depend on a and Ry. The total
infection cost is given by —a(rs — rp) with the remainder being
the total social distancing cost. Especially for intermediary Ry and
high infection costs @, equilibrium behavior strongly reduces the
total epidemic cost; see Fig. 5.

Again, we investigate the two limiting cases: for low a, we
obtain with Eq. 26 the nonbehavioral result

U=—a [1 + %W(—soRoeRO(m*l)) - Vo:| [35]
0

The difference between Eqs. 34 and 35 precisely quantifies the
utility gained by self-organized social distancing. This gain is

PNAS 2025 Vol. 122 No.9 2409362122

particularly high for high infection cost. In that limit, a/R5 > 1,

the utility is asymptotically given by, with sp= —1%0 —& =
1 2R
B YR
3 3 + In(Ros0)
U=—a|=(1—- [ S 6
* [2( o) 2R, 361

Discussion and Conclusion

In summary, we have identified an analytic solution for the fully
time-dependent Nash equilibrium behavior for social distancing
during an epidemic. We leveraged this solution to obtain the
following four key results.

First, a simple expression for the strength of rational social
distancing that is proportional to both the current number of
cases and the cost of infection, Eq. 20. This result provides
a rigorous justification for models that assume a reduction
of behavioral activity with prevalence (2, 4, 6, 17), e.g., in
models developed for tackling the HIV epidemic (93, 94). This
justification is especially strong in cases where our choice for
the utility is well aligned with the characteristics of the disease:
infections that are initially asymptomatic with delayed symptoms
at high cost. This is exactly the profile of HIV and similar diseases.

Second, scaling results for the total number of cases, Eq. 29,
and the infection peak, Eq. 30 which only depend on the basic
reproduction number and the cost of contracting the disease.
Such scaling results could have been previously accessible for
behavioral models using numerical approaches, e.g., refs. 5, 12,
19, and 26. Qualitatively, the reduction of the peak and excess
cases with infection cost was known, e.g., see ref. 87, but an
explicit scaling with disease and utility parameters has not been
reported to our knowledge. Earlier analytic approaches (1, 80—
83) did not allow for fully time-varying behavior, in contrast to
the current work.

Third, characteristic infection costs, Egs. 32 and 33, that
divide regimes of strong and weak social distancing and depend
only on the basic reproduction number of the disease. Similar
results are known numerically (5).

Finally, a closed form expression for the value of the udility,
Eq. 34, which allows quantifying the expected increase of utility
due to self-organized social distancing. Similar results are known
numerically (5).

These four results represent a remarkable simplification of
a complex optimization problem. The advantage of having an
analytic solution is always that it provides a deep and intuitive
understanding; here, of self-organized behavior in epidemics. Of
course, it is always possible to extend the complexity of the model,
e.g., beyond a vanilla SIR model. However, this will almost surely
result in an approach that must rely on numerical techniques and
thus can give approximate solutions while compromising the
deep overarching understanding. For other choices of the utility,
for instance corresponding to perfectly symptomatic infections
or assuming heterogenous utilities, the exact functional form of
these results would likely be different. Nevertheless, the results
reported here may prove useful as analytic approximations.

We believe our work to be useful to policy makers because
it yields a simple, albeit idealized, classification of the impact of
self-organized social distancing during epidemics and thus can
serve as guide for policy. Given the basic reproduction number
of a given disease Ry and its estimated cost of infection a, we
show that one can either expect negligible social distancing from

https://doi.org/10.1073/pnas.2409362122
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the population, when the infection cost is below a characteristic
cost, or substantial social distancing when it is above.

There is an ongoing debate about the degree to which behavior
of individuals is truly rational, as we (and others) assume. In
this context, our most significant result is that the rational
decision making process seems to be intuitively accessible to
most members of the population: rational social distancing is
proportional to the infection cost and to the current number of
cases. It is remarkable that the rational response we derive can
be condensed into such a simple heuristic, understandable to
a typical member of the population. While it may indeed be a
challenge for such individuals to derive our results for themselves,
a policymaker could communicate this simple heuristic, to be
adopted by the population in order to assist them in targeting
truly rational behavior. It is not unrealistic to expect this advice
to influence the population decision making, especially given
that it can be shown to be in each individual’s self-interest. In
this sense, the present work may itself help to “bootstrap” such
rational behavior.

While rational behavior is not the mathematically optimal
solution that maximizes utility, as would be accessible under ar-
bitrarily precise government control, it is relatively close to it. Ra-
tional behavior also has the advantage of being stable, in the sense
that it suppresses the detrimental behavior of freeloaders, who are
worse off if they deviate from the Nash equilibrium behavior. The
fact that rational behavior is so desirable means that new tools that
enable policymakers to help individuals target rational behavior,
like the ones we provide here, may be extremely valuable.

The analytic solution derived here can serve as a starting point
for semiexact or perturbative solutions of more complex disease
models and utilities, for instance with heterogenous population
structure.

Materials and Methods

Vaccination Salvage Term. A perfect vaccine applied to the whole population
at time t; corresponds to immediately moving the susceptible fraction of the
population into the recovered compartment, s(t > tf) = Oand ys(t > t7) =
0. Eq. 1 reduce to

dﬁi =i [37]

The remaining infectious recover exponentially, with i(t¢) = if,
i(t > tr) = irexp[—(t — tf)]. (38]

Analogously for the individual probabilities, with w;(tr) = ;.

it > 1) = wirexp[—(t = t)]. (39]

Since there are no new infections, the population selects pre-epidemic
behavior, k(t > tr) = Ry. The contribution to the utility Ur that arises
from the recovery process after t; can be written in analogy to Eqs. 4 and 5
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High-Infection Cost Asymptote for the Infection Peak Height. In the large
a limit, a/Rg > 1, we have s; & 1/Rg from Eq. 24, hence

b=asf/2 = a/(2Ry) [41]

large according to b >> Ry. The infection peak di/dt = 0 occurs ati = max(i),
where Eq. 1yields 0 = ks — 1. Using Eq. 20, we have

1=ks =s(Ry —ib) = s = 1/(Ry — ib) (42]

with the sum rule,

A

T=1—=r—s=1—r—1/(Ry—ib)
= (Ry—ib)i= (1 =r)(Ry — ib) — 1. [43]

This yields a quadratic equation for 7 with physical root
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2b
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2 L2(Rg+b(1=n)2]"

| =
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