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Motivated by the mechanics of dynamin-mediated membrane tube fission, we analyze the stability of
fluid membrane tubes subjected to shear flow in azimuthal direction. We find a novel helical instability
driven by the membrane shear flow which results in a nonequilibrium steady state for the tube fluctuations.
This instability has its onset at shear rates that may be physiologically accessible under the action of
dynamin and could also be probed using in vitro experiments on membrane nanotubes, e.g., using magnetic
tweezers. We discuss how such an instability may play a role in the mechanism for dynamin-mediated
membrane tube fission.

DOI: 10.1103/PhysRevLett.125.018101

The covariant hydrodynamics of fluid membranes has
been a subject of much interest in the soft matter and
biological physics community in recent years, for both the
general theoretical features of such systems [1–5] and their
application to biological processes [6–9]. Such systems
couple membrane hydrodynamics with bending elasticity
and have been shown to display complex viscoelastic
behavior in geometries with high curvature [10].
Membrane tubes are highly curved and are found in

many contexts in cell biology, including the endoplasmic
reticulum and the necks of budding vesicles [11]. Such
tubes can be pulled from a membrane under the action of a
localized force (such as from molecular motors) [12–14].
They are stable due to a balance between bending energy,
involving the bending rigidity κ, and the surface tension σ
with an equilibrium radius r0 ¼

ffiffiffiffiffiffiffiffiffiffi
κ=2σ

p
[15].

One of the simplest ways to drive flows on the surface of
these tubes is to impose a velocity in the azimuthal
direction. The analysis of shape changes induced by such
flows is the subject of this Letter. Two possible mechanisms
for realizing such flows via in vitro and in vivo experiments
are shown in Fig. 1.
The fission of membrane tubes plays an important role in

many cellular processes, ranging from endocytosis to
mitochondria fission [16,17]. The key component of the
biological machinery required to induce membrane fission
is a family of proteins called dynamin that hydrolyze
Guanosine triphosphate (GTP) into Guanosine diphosphate
[18,19]. Dynamin is a protein complex that oligomerizes to
form polymers which wrap helically around membrane
tubes [18,20,21]. Although there is clear evidence that
dynamin undergoes a conformational change when it
hydrolyzes GTP, there is not yet a consensus on the
exact method of fission [22–26]. Recent coarse-grained

simulations have shed some light on the possible role of
constriction and depolymerization [27]. It has been shown
experimentally that, upon hydrolysis of GTP, dynamin
(counter)rotates rapidly while constricting [19], giving a
mechanism for the generation of flows in the azimuthal
direction. Another possible way of driving such flows is
by pulling a narrow membrane (nano)tube from either a
giant unilamellar vesicle (GUV) or a cell using magnetic
tweezers. Magnetic field oscillations can then be used to
spin the attached magnetic bead [28–30], thereby setting up
a frictional flow in the tube.
The membrane behaves as a viscous fluid with 2D

viscosity ηm. The Saffman-Delbrück length, LSD ¼ ηm=η
[31–33], with η the bulk fluid viscosity, is the distance over
which bulk hydrodynamics screens membrane flows in
planar geometry. In the case of a membrane tube the
screening length is modified due to geometric effects and
becomes

ffiffiffiffiffiffiffiffiffiffiffiffi
LSDr0

p
, [33]. We consider dynamics on a scale

less than this, such that the dominant dissipation mecha-
nism involves the membrane flows. This means that we
can neglect bulk flows on sufficiently short length scales
(short tubes) [9,34]. For further details, see Supplemental
Material (SM) [35].
We consider a lipid membrane as a manifold equipped

with metric gij and second fundamental form bij [36]. The
coordinate basis is defined by the triad fe⃗1; e⃗2; n⃗g where e⃗i
and n⃗ are the basis of the tangent bundle and normal
bundle of the surface, respectively. The surface has velocity
V⃗ ¼ vþ wn⃗, where v ¼ vie⃗i. We label vectors in the
membrane tangent space in bold, e.g., x, and vectors in
R3 with arrows, e.g., x⃗. We define the mean and Gaussian
curvature as 2H ¼ bii and K ¼ det bij, respectively. We
assume the membrane behaves like a zero-Reynolds
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number fluid in the tangential direction [37] and has bending
energy given by the usual Helfrich energy [38]. Surface
tension σ is treated as a Lagrange multiplier imposing
membrane area conservation. We will assume zero sponta-
neous curvature for simplicity. For conciseness we will
simply state the equations of motion for the membrane; for
details on their derivation, see Refs. [7,39] or SM [35].
The continuity equation for an incompressible mem-

brane is given by

∇ivi ¼ 2Hw; ð1Þ
which is simply the Euclidean continuity equation modified
to account for the normal motion of the membrane [7,40].
Force balance normal to the membrane means the normal

elastic and viscous forces must sum to zero, leading to the
following:

κ½2ΔLBH − 4HðH2 − KÞ� þ 2σH

þ 2ηm½bij∇ivj − 2ð2H2 − KÞw� ¼ 0: ð2Þ

Here κ is the bending rigidity of themembrane andΔLB is the
Laplace-Beltrami operator. Note that we are using a geo-
metrical definition of ΔLB that is analogous to a curl-curl
operator on a manifold, hence the sign difference with the
usual Laplacian operator in the shape equation (see SM for
details [35]). This is a modified form of the shape equation
first derived by Zhong-Can and Helfrich [15], but with the
addition of viscous normal forces given by fluid flow on the
membrane. The term coupling the second fundamental form
and gradients in tangential velocity can be thought of as the
normal force induced by fluid flowing over an intrinsically
curved manifold. This term is of fundamental importance in
the present study as it drives a shape instability. The other
nonstandard term, ∼ð2H2 − KÞw, is the dissipative force
associated with the normal velocity, inducing flows in the
tangential direction on a curved surface.
Force balance in the tangential direction gives

ηm½ΔLBvi − 2Kvi þ 2ðbij − 2HgijÞ∇jw� −∇iσ ¼ 0; ð3Þ

which is the modified form of the 2D Stokes equations. The
new terms, coupling Gaussian curvature with tangential
velocity, and curvature components with the gradients in
normal velocity, come from themodified form of the rate-of-
deformation tensor which accounts for the curved and
changing geometry of the membrane. The term ∼Kvi
describes the convergence or divergence of streamlines
on a curved surface. The term∼ðbij − 2HgijÞ∇jw describes
the forces induced tangentially by the dynamics of the
membrane.
We consider a ground-state membrane tube (w ¼ 0) of

length L in cylindrical coordinates ðr; θ; zÞ with radius
r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
κ=2σ0

p
and impose a velocity v ¼ v0e⃗θ at z ¼ 0

(which can be interpreted as the edge of an active dynamin
ring, for example). Making use of the azimuthal symmetry
the continuity and Stokes equations reduce to an Ordinary
differential equation that admits the solution

vð0Þ ¼ ðv0 −ΩzÞ 1
r0
e⃗θ; ð4Þ

where the exact value of the shear flow Ω depends on
the boundary condition at z ¼ L, but roughly scales as
Ω ∼ v0=L if we either implement torque balance, e.g., at the
boundary where a tube joins onto a planar membrane, or
simply set vðLÞ ¼ 0; see SM for more details [35].
We can now make a perturbation about this ground state

in rðz; θ; tÞ ¼ r0 þ uðθ; z; tÞ, v ¼ vð0Þ þ δvθðθ; z; tÞe⃗θ þ
δvzðθ; z; tÞe⃗z, σ ¼ σ0 þ δσðθ; z; tÞ, and w ¼ ∂tu. Making
use of the discrete Fourier transform, fðθ; z; tÞ ¼P

q;m f̄q;mðtÞe_{qzþ_{mθ, where f̄q;m is the discrete Fourier

(a)

(b)

(c)

FIG. 1. Possible realizations of shear-driven instabilities on
membrane tubes (shown in orange throughout). (a) Dynamin on
the neck of a budding vesicle. The protein constricts and
(counter)rotates, prior to fission of the tube. This rotation drives
a significant shear flow near the neck of the vesicle. We discuss
the possible effects of the Gaussian curvature of the neck in the
conclusion. (b) A GUV with membrane tube pulled by magnetic
tweezers; the magnetic bead can be spun in order to drive flows in
the azimuthal direction on the tube. (c) Sketch of the growth of
the helical instability described in this Letter. The final stage is a
possible pathway to tube fission due to nonlinear effects. The
basis vectors on the membrane e⃗i, where i ¼ r, θ, z, length of
tube L, and equilibrium radius r0, are labeled. Middle panel
shows shear direction.
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transform of fðθ; zÞ with m ∈ Z and q ¼ 2πn=L where
n ∈ Znf0g, we can write Eqs. (1)–(3) in Fourier space and
linearize in the perturbations. The linear response of the
normal force balance is the following:

F u
q;mūq;m þ F σ

q;mδ̄σq;m þ F θ
q;m

¯δvθq;m

þ F z
q;m

¯δvzq;m þ Gq;m
¯δwq;m ¼ 0; ð5Þ

where F u
q;m ¼ ð4σ20=κÞ½q̃4 þm4 þ 2q̃2m2 − 2m2 þ 1�−

ð2ηmmq̃Ω=r20Þ, F σ
q;m¼1=r0, F θ

q;m¼ð2{mηm=r20Þ, F z
q;m¼0,

and Gq;m ¼ ð2ηm=r20Þ, where q̃ ¼ qr0.
Note that the sign of the final term in the F u

q;m
coefficient, scaling with the shear Ω, suggests that the
shear flow could lead to an instability in the m ≠ 0 modes;
see Fig. 2. Note that the (m → −m, q̃ → −q̃) symmetry of
the normal force defines a “handedness” which changes
upon reversing the direction of the shear rate.
Similar linear response equations can be found for the

force balance and continuity in the tangential directions;
these can then be used to solve for δ̄vzq;m, δ̄vθq;m, and δ̄σq;m in
terms of ūq;m and its time derivative. From this we derive
the following growth rate equation for ūq;m, where time is
normalized according to t ¼ t̃τ, with τ ¼ ηm=σ0,

∂ t̃ūq;m ¼ −{m
v0ηm
r0σ0

ūq;m − Ω̃m∂ q̃ūq;m þ Fðq;mÞūq;m; ð6Þ

where

Fðq;mÞ¼fmq̃½ðm2þ q̃2Þ2−2q̃2�Ω̃
−ðm2þ q̃2Þ2½1þm4þ q̃4þ2m2ðq̃2−1Þ�gð2q̃4Þ−1

ð7Þ
and Ω̃ ¼ ηmΩ=σ0 is the dimensionless shear.
The modes become unstable when the real part of the

growth rate changes sign to RefFðm; qÞg > 0, which
occurs for

Ω̃mq̃ >
ðm2 þ q̃2Þ2½1þm4 þ q̃4 þ 2m2ðq̃2 − 1Þ�

ðm2 þ q̃2Þ2 − 2q̃2
: ð8Þ

The m ¼ 0 peristaltic mode is always linearly stable.
This is not the case for them ¼ 1mode, which is the first to

be driven unstable. The stability threshold for the m ¼ 1
mode is plotted in Fig. 3 in solid black. Note that the growth
rate is a discrete function of q̃ ¼ ð2πnr0=LÞ with discre-
tization set by the length of the tube. This means that,
beyond a certain rotation speed, a helical mode will grow,
with pitch length initially set by the length of the tube. The
apparent divergence of the growth rate for small q̃ is
ultimately limited by bulk hydrodynamics.
This analysis is complicated by the advection in q̃ space

of helical modes that arises from the term involving ∂ q̃ in
Eq. (6). This reflects the fact that the ground-state shear
flow continuously adds new turns to an existing helix,
thereby increasing its characteristic wave number. Large
wave numbers are stable, so a helical perturbation rendered
unstable by the shear flow is eventually stabilized by this
advection. This leads to a nonequilibrium steady state,
which can be obtained by solving Eq. (6) with thermal
noise added using the method of stochastic characteristics;
see SM [35] and Ref. [41] for details. This nonequilibrium
steady state for hjūq;mj2i has a peak in q space; see Fig. 3
inset. Because the m ¼ 1 modes are critical in the q̃ → 0
limit [42] we choose a small q̃ cutoff for the noise spectrum
at q̃0 ¼ 2πr0=L, which is physical, given the finite length
of our tube. Equation (6) is based on a small perturbation
expansion and breaks down when the spatial gradients
become large, hj∇uj2i ∼ 1, in which case the end state

FIG. 2. The normal component of the viscous force per unit
area on a helical shaped tube coming from the term ηmbij∇ivj in
Eq. (2) (purple outward, green inward). This shows the helical
nature of the instability above the critical shear rate. The tube
would eventually be advected to stability again, as the helix
winds up under the shear flow (see text), although the tube may
reach the nonlinear deformation regime before this happens.

FIG. 3. Dynamical phase diagram of the state of the tube in the
presence of fluctuations. Helical q̃ modes to the left of the black
line are unstable according to Eq. (8). The blue dashed and blue
dotted lines show the value of Ω̃ for which 5% and 32% of the
fluctuations become nonlinear as a function of q̃0, the cutoff on
the noise spectrum coming from the finite tube length. Inset: The
statistical steady state of hjūq;1j2i for cutoff q̃0 ¼ 0.2 and shear
Ω̃ ¼ 1 in black with equilibrium thermal fluctuations shown in
dashed red.
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might be quite different. In Fig. 3, we plot the value of Ω̃, as
a function of the cutoff q̃0, for which 5% and 32% of
fluctuations are in the nonlinear regime as the blue dashed
and blue dotted lines. Beyond this shear rate the tube will be
deformed nonlinearly and it is not clear if there will be a
steady state. A full analysis of this is beyond the scope of
the present work.
In the small q̃ limit, the threshold shear [Eq. (8)] is

Ω̃ ≈ 2q̃ (see SM [35]). The shear rate is Ω ∼ ð2πr0ν=LÞ,
where ν is the spinning frequency. Assuming that the cutoff
wave number of the tube is associated with a fundamental
mode q̃0 ¼ ð2πr0=LÞ gives the critical spinning frequency
for the onset of instability as νcrit ≃ ð2σ0=ηmÞ. The func-
tional form of the critical frequency can be understood
using a scaling analysis of Eq. (2); see SM [35].
Typical membranes in the fluid (liquid disordered) phase

have viscosities ηm ∼ 10−9–10−8 Pam s [43] (higher in the
liquid ordered phase). However, much higher values of
effective viscosity have been associated with tubes pulled
from living cells, ηm ∼ 10−7–10−5Pam s [8]. We use these
numbers, noting that effective viscosities may be higher
still if the neck is crowded with proteins. We assume the
surface tension takes a physiologically typical value [44] of
σ0 ∼ 10−5 Nm−1 [18,22]. Vesicular necks correspond to
short tubes with q̃0 ∼ 1, so from Fig. 3 we find Ω̃ ∼ 5 for the
stability criterion and Ω̃ ∼ 50 for the nonlinearity criterion
which correspond to ν ∼ 5–500 Hz and ν ∼ 50–5000 Hz,
respectively, with the wide range traced to the uncertainty
in membrane viscosity. Dynamin polymers have been
measured to have rotational frequencies ν ∼ 10 Hz [19],
suggesting the instability could be accessible to dynamin
for the higher values of viscosity found in cells. These
estimates are quite conservative as in a realistic scenario
active fluctuations are likely to be much larger than thermal
fluctuations, perhaps by an order of magnitude or more, and
we are unlikely to have such a hard cutoff at q̃0.
A natural way for the fluctuations to progress in the

nonlinear regime is fission of the tube, which is of
particular significance given that the exact mechanism
for dynamin-mediated fission is unknown. As the fluctua-
tions grow the surface tension will increase, either narrow-
ing the tube or causing pearling [45]. An increase in tension
has been shown to accelerating spontaneous tube fission
[46] and friction impeding membrane flow has been shown
experimentally to scission tubes [47]. The increase in
fluctuations is also likely to promote the formation of
hemifused states, which can be an important intermediate
for fission [27]. Surface tension fluctuations, even at the
linear level, can be estimated to be much larger than the
ground-state surface tension and this could also be impor-
tant in driving membrane lysis; see SM [35]. This picture of
fission, promoted by membrane hydrodynamics just out-
side the active dynamin site, is consistent with the exper-
imental observation that the location of fission is near
the edge of the active dynamin site rather than directly

under it [46]. The timescale over which the instability
grows is of the order of τ ∼ 10−2–1 s, which is sufficiently
fast to be consistent with the dynamin-induced fission
process [48].
Although we have provided evidence that a membrane

instability can be driven by the rotation of dynamin, our
study is based on the simplified geometry of a cylindrical
tube, rather than the neck of a budding vesicle, a location
where dynamin might typically act in vivo. While our
approach becomes analytically intractable for such com-
plex membrane geometries, we can gain some intuition into
how the driving force per unit area of the instability
changes with the geometry of the neck region by consid-
ering the term in the normal force balance equation that is
responsible for driving the instability. Given the helical
symmetry of the instability we infer that this driving force
per unit area goes like the mixed derivative in the shape
fdriving ∼ ηmbij∇ivj. The term which acts like the shear rate
on the tube now depends on z and we must calculate it
numerically; see SM [35]. In the case of a catenoidal neck
this leads to an amplification of the driving force by (only) a
factor of 2 near the active site (z ¼ 0); for details see SM
[35]. While a relatively small effect, this is qualitatively
consistent with the experimental observation that dynamin
fission of a tube in vitro often occurs near the GUV neck
[46] and that fission on the necks of budding vesicles
in vivo occurs faster than it does on long tubes [22,49].
A second possibility for the nonlinear growth is a stable

nonequilibrium shape driven by the membrane flow. In this
case it is worth noting an analogy between the membrane
tube instability discussed here and elastic rods under
torsion that deform nonlinearly into plectonemes [50]. If
excess membrane area is more readily available it may be
possible for the unstable tube to develop fluid plectonemes
if the instability develops without a scission-inducing
increase in tension. Similar structures are observed in
experiments on long tubes covered in dynamin [19,49].
The experiment suggested in Fig. 1(b) would both test

our predictions more quantitatively and probe the nonlinear
evolution of the fluctuations so as to determine whether
these hydrodynamic effects alone are sufficient to induce
fission. The instability should also arise in a longer tube;
however, the quantitative nature of our predictions would
likely require modifications due to screening of membrane
flow by the ambient fluid. In this case we expect that the
unstable wavelength would then be set by the screening
length

ffiffiffiffiffiffiffiffiffiffiffiffi
LSDr0

p
rather than the tube length [33,51] and that

our results would continue to hold at the scaling level.
In summary, we have developed a hydrodynamic theory

that predicts an instability on fluid membrane tubes that is
driven purely by a shear in the membrane flow. Such flows
are shown to first drive a helical instability, which is quite
distinct from any previously identified instabilities of fluid
membrane tubes. This instability, although eventually
advected to stability by the flow, is shown to be able to
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significantly modify and enhance the fluctuation spectra of
a membrane tube. We predict that this instability, and
perhaps its fully nonlinear manifestation, may be physio-
logically accessible to dynamin. Such hydrodynamic
effects have not previously been considered in models of
its function [49,52]. This instability may provide a mecha-
nism for dynamin-mediated tube scission.
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