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We study the dynamics of ring polymers confined to diffuse in a background gel at low concentrations. We

do this in order to probe the inter-play between topology and dynamics in ring polymers. We develop an

algorithm that takes into account the possibility that the rings hinder their own motion by passing

through themselves, i.e. “self-threading”. Our results suggest that the number of self-threadings scales

extensively with the length of the rings and that this is substantially independent of the details of the

model. The slowing down of the rings' dynamics is found to be related to the fraction of segments that

can contribute to the motion. Our results give a novel perspective on the motion of ring polymers in a

gel, for which a complete theory is still lacking, and may help us to understand the irreversible trapping

of ring polymers in gel electrophoresis experiments.
1 Introduction

The dynamics of large polymer molecules diffusing in a gel
plays a central role in polymer physics and biology. The motion
of linear and branched polymers in solution has been thor-
oughly studied in the past (see ref. 1 and 2 and references
therein). On the other hand, there has been much less progress
in understanding the motion of closed (ring) polymers in a
gel.3–6 The dynamics of ring polymers, because of the lack of
ends, differs markedly from those of their linear counterparts,
involving fundamentally different modes of stress relaxation7

and diffusion.8–11 A proper understanding of ring polymers and
the associated non-local topological constraints that they must
satisfy remains one of the major unresolved challenges in
polymers physics. These properties have particular relevance to
DNA, which can occur in circular form in Nature, e.g. as
bacterial plasmids, and its characterisation by gel electropho-
resis.12–15 In order to be able to give a satisfactory interpretation
of these experiments, a deeper understanding of the mecha-
nisms driving the diffusion of the ring polymers at equilibrium
is required.

The conguration of a sufficiently long unknotted self-
avoiding ring polymer unlinked from the gel is a double-folded
self-similar branched tree (see the le side in Fig. 1), also
called a lattice animal.6,16–18 It is well-known that the gyration
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radius of a self-avoiding lattice animal grows asMn, with n ¼ 1/
2 as opposed to nx 0.588 for the case of a linear swollen coil in
three dimensions.19 Because of this, the self-density rs h M/
hRg

2i3/2 of a large ring polymer in a gel is much higher than
that of either rings in good solvents, or linear polymers.
Because of the compactness of the congurations, the contact
probability between different segments belonging to the same
chain is higher. This implies that ring polymers in a gel are
more likely to hinder their own motion by interacting with
themselves, as previously speculated.3,6 In the following, we
will be interested in congurations of a ring in a gel in which a
double-folded segment opens up and is threaded by another
double-folded segment of the same chain (“self-threading”)
(see Fig. 1(f)). In particular, when a ring polymer is forced to
move inside a gel, self-threading can hinder polymer diffu-
sion. Imagine a ring that winds around a strand of the gel and
passes through itself, as shown in Fig. 1(f). In this case the
threading segment (green) behaves as a temporary “pin” for
the threaded one (red), because of the uncrossability
constraint. In order for the latter to freely diffuse, the former
has to be removed. In the limit of large rings, one can think of
a growing number of penetrations which can assume a hier-
archical structure (imagine a segment of the polymer that
threads through another that then is itself threaded, etc.).
These would have to be undone in order to re-establish free
diffusion, consequently increasing the polymer relaxation
time. Self-threading is also a candidate for describing the low
electrophoretic mobility (at low elds) and irreversible trap-
ping (at high elds) of long ring molecules.20–22 Imagine
applying an electric eld to the conguration shown in
Fig. 1(f), in the direction parallel to the green segment. The
ring can end up “tightening” itself around the obstacle, and
become irreversibly self-trapped (see Fig. 1(g)), in a process
that resembles the tightening of a knot.23 Threading has been
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Cartoon picturing the dynamics of the rings. The rings in the gel (left) are represented by lattice animals moving on the dual of the gel
lattice (centre). (a–c) represent the moves allowed in a gel: translation, bending and branching, each by retraction of a terminal segment (shaded
in grey). See the text for more details. (d) With probability pthp

branch/bend
m/m0 a bead can move onto a site that is already occupied to become an

effective pin (green) for the occupant bead mp (red). Computationally, we implement this by stacking two beads on top of each other, on the
same site (green bead on top of red one). (e) This is the case in which the threaded segment coincides with an end, in this case such an end
becomes “pinned”. In this configuration, the red segment/bead cannot be retracted, while the green one can contribute to the motion by
annihilating with an anti-kink (see text). In this case m0 can extend only if one of the grey beads or the green one is removed. In the case the red
one is attempted to be retracted, the move would be rejected. (f) and (g) show two snapshots of molecular dynamics simulation showing a self-
threading and a self-trapping configuration, respectively. The colors highlight different segments of the chain. In (f) an ending segment of a
branch (green) threads through another ending segment of another branch (red). This case is analogous to the case (e) in the left panel. (g) is
obtained after a strong electric field is applied to a self-threading configuration. One can imagine applying a field directed upward to the
configuration in (d). The green segment may elongate, while the grey (free) end slides backward until it coincides with the red segment. If this
occurs, the configuration is “trapped”, like the one pictured in (g). The gel structure in (f) and (g) is sketched only partially and thinned for simplicity
(see ESI† for details).
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recently acknowledged to be a non-negligible topological
constraint in the case of ring polymers in dense solu-
tions,11,24,25 which can affect both static and dynamic proper-
ties of the system.

Here, we study how threading of the chains through
themselves can affect their own motion under dilute condi-
tions. We study ring polymers diffusing in a gel by coarse
graining the double-folded congurations to a network of
beads located in the cells of the gel (see Fig. 1). This coarse
graining procedure maps the problem of simulating ring
polymers diffusing in a gel to that of annealed branched
polymers diffusing on a lattice, or lattice animals,16 under a
specic set of rules which preserve the rings' topology (see
Fig. 1 and the next section). The novel aspect of this work is in
how we deal with the dynamics. This is simulated using an
equivalent model to the kink-gas diffusion introduced by de
Gennes,4,6,26 suitably modied to correctly take into account
the slowing down due to the chain self-threadings. Our results
suggest that in the limit of large rings, self-threadings increase
extensively with the ring length and the dynamics is conse-
quently slowed down.
This journal is © The Royal Society of Chemistry 2014
2 Algorithm and computational
details

We implement the coarse-grained model by means of lattice
kinetic Monte-Carlo simulations of isolated lattice animals
formed byM beads diffusing on a lattice. Along with the coarse-
grained model, we perform a molecular dynamics simulation of
a single ring polymer consisting ofM¼ 5120 beads (see ESI† for
details) immersed in a gel, which has a lattice spacing equal to
the ring Kuhn length (see Fig. 1(f) and (g)). The latter is only
intended to investigate static congurations of a large polymer
in a gel with a xed length. Static and dynamic properties for
rings with different lengths are then le to be studied by means
of the coarse-grained Monte Carlo model.

In order to simplify our model we make some assumptions:
rst, by replacing a double-folded segment of the polymers with
a single bead lling a unit cell, we are implicitly assuming that
the lattice spacing l of the gel is comparable to the ring Kuhn
length lk. The polymers are, therefore, exible on the length
scale of the gel pores. By making this choice, we also assume
Soft Matter, 2014, 10, 5936–5944 | 5937
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Fig. 2 Sketch of the “kink”–“anti-kink” dynamics. (a) A pair “kink”–
“anti-kink” is created at m. The kink settles and becomes m0, while the
anti-kink starts a random walk fromm. (b and c) The “anti-kink” travels
to the left departing from the kink. (d) The “anti-kink” hits a free end
(shaded in grey) and annihilates, generating the configuration in (e). (e)
New configuration generated by the algorithm, where the old free end
to the left is removed and substituted by a new free end.
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that the gel is tighter than a typical 6% agarose gel by a factor of
2.27 Capillary or polyacrylamide gel electrophoresis offers
interesting scenarios in which the Kuhn length of the samples is
comparable with the pore size.22 Also, hydro-gels made from
DNA strands and joints28–30 have highly tunable properties and a
very high tensile modulus that could produce materials with
pore sizes comparable to the Kuhn length of the polymers
analysed. We simplify further our model by assuming that the
gel bers are rigid.

We study systems of N ¼ 10 non-interacting ring polymers of
length M ¼ 32, 64, 128, 256, and 512 beads. The rings do not
interact with each-other and therefore behave as if they were
isolated. We perform at least 3 realisations per simulation,
meaning that we average at least over 3N rings. The rings are
prepared unlinked from the gel, and therefore they must
assume a double-folded conguration, i.e. every unit cell of the
gel has both an out-going and in-going polymeric strand (see
Fig. 1). We coarse-grain the polymers and represent both the
out-going and in-going strands with one bead, which has the
size of a Kuhn segment, and that spans the entire unit cell. In
this way a ring with 2M segments is modelled via a collection of
M beads. The rings are treated as lattice animals diffusing on a

cubic lattice which is shied by
�
l
2
;
l
2
;
l
2

�
with respect to the gel

lattice,31 which is also modelled as a perfect cubic lattice. In
other words, we model the rings by tracking the backbone and
the branches of the lattice animal shapes they take (see Fig. 1).
Our algorithm penalises the creation of new branches and the
bending of the terminals by introducing two energies, Ebranch ¼
2Eb(1 + cos q) and Ebend ¼ Eb(1 + cos q) respectively, where q is
the angle formed by consecutive pairs of beads and Eb ¼ kbT.
The motivation for this is two fold: (1) pure translation does not
5938 | Soft Matter, 2014, 10, 5936–5944
involve any change in energy (Fig. 1(a)) and (2) branching
involves a creation of a new double folded terminal segment
which, in terms of angles, contains two 90� angles with the
neighbours (mn in Fig. 1) and one (newly formed) 180� angle
(being a terminal segment). Therefore, we approximate the
energy penalty as twice the energy taken to bend an existing
terminal segment (see Fig. 1(b) and (c)).

Our algorithm is the following: rst, we pick one bead (m)
randomly. Second, we attempt a move to occupy a neighbouring
site (m0):

� If m0 is free, then the move is tested by means of the
Metropolis algorithm, where the probability to be accepted is
given by

pbranch/bendm/m0 ¼ exp{�Ebranch/bend(q)/kbT}

� If the site m0 is occupied by a non-neighbouring bead of m
then the move is accepted with probability:

pbranch/bendm/m0 ¼ pth exp{�Ebranch/bend(q)/kbT}

where pth is a free parameter in our model and represents the
probability of self-threading.

In order to correctly reproduce the hindering of the motion
when the terminal segments are threaded, and hence not free to
diffuse and contribute to the motion we adopt the following
strategy: once that the move has been “energetically” accepted,
we place a new virtual segment at m0 (represented as a dotted
segment/circle in Fig. 1) and simulate the contour diffusion of
an “anti-kink” (or a “hole”) that starts from m and can annihi-
late only with one of the terminal beads of the lattice animal
(represented as segments/circles shaded in grey in Fig. 1) or the
newly formed segmentm0. For instance, in Fig. 1(a), once thatm0

is created, a random walk starts from m and can hit either m0

(which happens most of the times), or the grey bead at the other
end of the chain. In the rst case, the chain does not move (m0 is
created and removed). In the second case, the chain steps to the
right by one site (m0 is created and the grey bead is removed).
Instead of having “kinks” (or segments with stored length) that
accumulate along the contour and diffuse until they stop by
extending a new segment, we rst extend a new segment and
then look for a terminal segment which can be retracted in
order to accommodate the newly formed protrusion (and
conserve the total mass). Since only one kink per time is allowed
to travel along the lattice animal, i.e. kinks do not interact, our
method is completely equivalent to the kink-gas diffusion
introduced by de Gennes,4,6,26with the difference that our model
can take into account long-ranged correlations which are
essential in themotion of polymers with a closed topology. In de
Gennes' picture, the polymers moved by accumulating the
mass, or length defects (kinks) along the contour, and by
randomly spreading the excess of mass towards the terminal
segments, which can extend. Here, we allow for temporary
extensions of the terminal segments by creating a mass-hole
pair (“kink”–“anti-kink”). The former immediately settles at the
end of the segment (m0); the latter starts a random walk along
This journal is © The Royal Society of Chemistry 2014

http://dx.doi.org/10.1039/c4sm00619d


Paper Soft Matter

Pu
bl

is
he

d 
on

 0
3 

Ju
ne

 2
01

4.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
W

ar
w

ic
k 

on
 2

0/
01

/2
01

5 
12

:1
0:

06
. 

View Article Online
the chain and stops when either an end, or m0 itself is hit (see
the next section for details). It is also worth noting that we
implicitly assume that the probability of unthreading is 1 and
that any energy barrier for unthreading is small, noting that the
barrier for threading is likely to be much larger than the barrier
for unthreading.‡
2.1 “Kink”–“anti-kink” dynamics

This algorithm is a novel way of dealing with long-ranged
correlations introduced by the fact that the chains are closed,
and therefore have a well-dened topological state. Imple-
menting these topological constraints is essential in simulating
entangled ring polymers. The hindering of the motion when the
terminal segments are threaded by another segment, i.e.
forbidden to retract (Fig. 1(e)) is taken into account via
following a set of rules (one can visualise these in Fig. 2 and
1(e)). Starting from the conguration shown in Fig. 2(a), when a
move m / m0 is energetically accepted, a pair “kink”–“anti-
kink” (or mass-hole) is generated at site m (Fig. 2(b)). While the
kink becomes instantaneously a new virtual segment m0, the
anti-kink starts a random walk from m which can either hit (i)
m0, in which case the conguration goes back to the one shown
in Fig. 2(a), (ii) a terminal end which is free (Fig. 2(d)), in which
case the end is retracted and the new virtual segment m0

becomes part of the chain which becomes the one shown in
Fig. 2(e) or (iii) a terminal end which is pinned, in which case
the end is not retracted; the move is rejected and the congu-
ration goes back to the initial state (case shown in Fig. 1(e)).
This algorithm allows for rejected moves caused by long ranged
constraints introduced by the fact that the chains are closed and
have to preserve their topological state. In other words, one can
see this algorithm as describing elastic deformation of the
chains which can protrude from any point along their contour,
as opposite to linear polymers which have to free their ends
before they can relax their backbone. This elastic deformation
introduces a displacement of mass which can be described as a
mass-hole pair or “kink”–“anti-kink”. While the kink describes
the protrusion/extension attempted by the chain, the anti-kink
probes the “availability” of ends which can be retracted or free
(not pinned) ends. This procedure represents a novel way of
testing the entanglement of the chain. It has the advantage that
it can test long-ranged constraints such as those represented by
‡ We can actually generalise our interpretation by noting that the average number
of penetrations will be determined by the ratio of probabilities (difference in
energy barriers) between threading and unthreading, as usual. An alternative
interpretation of pth would therefore be the ratio of these rates, so that each
value would correspond to the thermodynamically correct density of
penetrations. The actual kinetic rate for unthreading, when the end of the
duplex ring has already diffused to the site of the threading, would still neglect
the effect of a relatively small energy barrier. However, we believe this to be a
tolerable simplication within a general philosophy that involves aggressive
simplication, particularly given that the unthreading dynamics is likely
dominated by the rate of diffusion of the penetrating portion of the duplex
ring, which can be much larger than a single unit. A small correction to the
kinetic rate constant for the nal unthreading step would then yield an even
smaller correction to the overall result for the (un)threading dynamics. We
therefore neglect it entirely for simplicity.

This journal is © The Royal Society of Chemistry 2014
penetrations and hence it is sensitive to self-entanglements. In
fact, the larger the number of pinned ends the more likely it is
that a move is rejected.

This algorithm becomes identical to de Gennes' kink-gas
diffusion in the limit pth ¼ 0, i.e. when no threadings are
allowed. On the other hand, in the case pth > 0, we will see that
this algorithm produces profoundly different behaviour which
sheds light on the properties of self-entangled ring polymers in
a gel. At every Monte-Carlo time-step, every bead in the system is
considered in turn, on average. By using this algorithm, we
simulate chains which can diffuse by extension/retraction of
their segments. The retraction is constrained by the presence of
self-threading segments which hinder chain slithering. We
implicitly assume that the relaxation of a single anti-kink is
much faster than the extension of a new segment. The conse-
quence of this is two fold: (1) only one “anti-kink” (or “hole”) at
the time is allowed to travel along the chain and (2) the time
scale at which the motion of the chains takes place is the
relaxation time of the “anti-kinks”. In other words, we repro-
duce the amoeba-like diffusion of the polymers at time scales
larger than the “anti-kinks” diffusion. This choice was made to
give more emphasis on the long-time behaviour of the polymer
dynamics.

It is also interesting to notice that our model naturally maps
to a model for annealed branched polymers.32 For pth ¼ 0 this
model maps to the well-established bond-uctuation model,33

where the set of allowed bonds are restricted to preserve the
topological state of the rings. From another point of view, one
can notice that by setting pth ¼ 0, we forbid the presence of
loops in the conguration of the animals. In this case, our
model is equivalent to a blob picture6 for the double-folded
rings, where the entanglement length is xed to one lattice
spacing. As pth / 1, the probability of nding loops increases.
It is worth noting that only two beads are allowed on the same
site at the same time. Hence, even when pth ¼ 1, the lattice
animals are never completely ideal. Also, we do not allow for
congurations in which two segments are sharing the same site
but are not threading. The motivation for this is the following:
by coarse-graining the entire unit cell to one bead, we lose
information on the local conguration inside each unit cell and
therefore we cannot tell whether two chains sharing the same
cell are threading or not. We arbitrarily choose to always label
them as “threading”. Making this choice over-counts the
number of self-threadings, however, we nd that our results are
independent of the details of the model and the precise value of
the free parameter pth, and clearly demonstrate the importance
of self-threading constraints on the motion of long ring poly-
mers in a gel.

3 Results
3.1 Diffusion coefficient

By tuning the free parameter pth we can study the effect of self-
threading on the polymer motion. In the case pth ¼ 0 we expect
that the chains follow pure amoeba-like diffusion,4 where the
diffusion of “anti-kinks” takes a time of order skink � M2 to
travel a distance Rg. Since at every time step, all M segment
Soft Matter, 2014, 10, 5936–5944 | 5939
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attempts to move, on average, we expect that the time taken for
the centre of mass to diffuse one Rg scales as

Tr(pth ¼ 0) h T0 ¼ Mskink � M3 (1)

and consequently, the diffusion coefficient of the centre of mass
of an isolated chain in a gel is:

DCMðpth ¼ 0ÞhD0 ¼ Rg
2

T0

� M2n�3 ¼ M�2 (2)

since n ¼ 1/2 in 3d for self-avoiding rings in a gel.19 The results
are incidentally the same as for repeating linear polymers, as
obtained previously.4 This is due to the fact that the exponent n
for self-avoiding lattice animals coincides with the value for
Gaussian chains. We measured the mean square displacement
of the centre of mass hd2rCMi as a function of time and for
different values of the chain length and probability of threading
(see Fig. 3). Since the model does not capture the dynamics at
time-scales shorter than the kink relaxation, we expect to
observe pure free diffusion of the ring's centre of mass. In fact,
for pth ¼ 0, a free diffusive behaviour throughout the time
window is obtained. On the other hand, for pth / 1 the mean
square displacement of the centre of mass shows sub-diffusive
behaviour at intermediate times with crossover to free diffusion
only at longer times. This behaviour is unambiguously related
to the presence of self-threadings, since the system is in the
dilute regime. In other words, allowing the rings to self-thread
Fig. 3 Mean square displacement of the centre of mass of the rings as a
and increasing length M. We observe sub-diffusive behaviour d2rCM � t
threading pth. The slowing down can only be caused by an increasing num
(see the text for details). In clockwise order: (a) M ¼ 32, (b) M ¼ 64, (c) M

5940 | Soft Matter, 2014, 10, 5936–5944
results in an increasingly important self-constraint on the
motion. These contributions on the motion are ultimately
caused by the preservation of the topological state of the rings,
which have to stay unknotted and unlinked from both the gel
and themselves. The length-scales associated with the crossover
from sub-diffusive behaviour to the free diffusive one lie
between (Rg

2)1/2 and (10Rg
2)1/2. This feature is in agreement with

previous ndings in systems of rings with similar topological
constraints.10,11 We argue that these length-scales are related
with the loss of threading, and that the rings have to travel many
times their own average size before relaxing all the threadings,
i.e. freely diffusing. We expect that linear or branched polymers
would not undergo the same change in diffusion by allowing
sites with double occupancy, as there is no dened topological
state to be conserved.

In Fig. 4 we show the scaling behaviour of the diffusion
coefficient of the centre of mass DCM(pth). Notice that DCM(0) h
D0 � M�2, reproducing the scaling regime obtained for the
amoeba-like motion, as in previous studies.4–6 For higher values
of pth the rings diffuse slower, due to the chains' self-threading.
The M dependence on the diffusion coefficient of the centre of
mass of the rings is observed to become more severe as pth / 1.
3.2 Radius of gyration

The radius of gyration at pth ¼ 0 is in agreement with the mean-
eld prediction (hRg

2i � M) for lattice animals with excluded
function of the time for different values of the threading probability pth
x with x < 1 until intermediate times, even at moderate probability of
ber of self-threadings, which becomemore important for longer rings
¼ 128 and (d) M ¼ 256 beads (see the text for details).

This journal is © The Royal Society of Chemistry 2014
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Fig. 4 log–log plot showing the diffusion coefficient of the centre of
mass DCM computed as limt/Nd2rCM/6t as a function of the chain
lengthM. One can observe pure amoeba-like (free) diffusion at pth¼ 0,
which scales as DCM � M�2 according to eqn (2), or slower diffusion
DCM � M�a with a > 2 for increasing pth.

Fig. 6 Values of the exponent n as a function of pth. The fit has been
performed using a sigmoid function nðxÞ � A=ð1þ ewðx�p*

thÞÞ þ B. The
result suggests a continuous transition from lattice animal behaviour
(n ¼ 1/2) to fractal globule behaviour (n ¼ 1/3) as pth crosses p*

th � 0.5.
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volume.16,19,34 Higher values of pth allow the polymers to partially
self-overlap (only a maximum of two beads per site is allowed)
and therefore reduce their size. The mean-eld prediction for
ideal lattice animals16 (Rg�M1/4) breaks down at d < dc with dc¼
8 for lattice animals in good solvents, hence we do not expect
this to be valid in the present work. The scaling regime at pth¼ 1
resembles instead a regime in which the lattice animals have
screened out two-body excluded volume interactions, i.e. the
repulsive second virial coefficient is zero, while retaining three
body excluded volume. It has been recently shown that the
gyration radius of rings in themelt assumes theminimum value
allowed compatible with such excluded volume constraints, i.e.
a fractal globule conformation with hRgi � M1/3 in d ¼ 3,35,36

which is compatible with our ndings (see Fig. 5). The values of
the entropic exponent n observed in the kinetic Monte-Carlo
simulations are also in agreement with the value obtained via
the molecular dynamics simulation (see ESI†).

We also investigate the functional dependence on the
exponent n on the value of the free parameter pth (see Fig. 6). The
function that best ts the data is a sigmoid function which
Fig. 5 log–log plot showing the radius of gyration of the chains as a
function of the ring length M. The prediction Rg � M1/2 for ring poly-
mers in a gel is obtained at pth/ 0. For pth/ 1, we observe Rg/M1/d,
as predicted is previous studies.34

This journal is © The Royal Society of Chemistry 2014
continuously crossovers from a lattice animal value of n¼ 1/2 to
a fractal globule value of n ¼ 1/3 as pth crosses p*th x 0.5. Our
model captures such a crossover by just varying the free
parameter of the model. Under this perspective, pth plays the
role of an effective second virial coefficient, which regulates two
body repulsion. This also suggests that steric effects are inti-
mately related to the hindering of the motion, since the topo-
logical state of the rings has to be preserved, i.e. the threading
segments cannot cross. We also want to stress that for any
polymer with a non-closed shape embedded in a background
gel, a variation of the second virial coefficient is not expected to
affect its motion as severely as in the case of rings, since it is the
preservation of the topological state at the heart of the
constraint on the motion. In light of this, in the next section we
study the statistics of self-threadings and their functional
dependence on length M and probability of threading pth.

3.3 Self-threading and pinned ends

In Fig. 7 we show that the number of threadings per chain is
found to scale extensively with the number of beads M times a
constant that in general can depend on pth, i.e. hThi � A(pth)M.
As one can see from Fig. 1, a self-threading looks like a loop in
Fig. 7 log–log plot showing hThi/M as a function of chain length M.
For a large M, the number of threadings per chain scales extensively
in M.
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Fig. 8 log–log plot showing the ratio hNfei/hNei as a function of the
chain length. The curves seem to approach the limiting value of 1/2, at
which half of the ends would be pinned and cannot contribute to the
motion.

Fig. 9 log–log plot showing the relaxation time Tr ¼ hRg
2i/DCM as a

function of the ring length M. The prediction for an amoeba-like
motion is obtained at pth ¼ 0. For higher values of pth we observe a
slowing down of the chain relaxation.

Fig. 10 log–linear plot showing the relaxation time Tr as a function of
the fraction of pinned ends hNpei/hNei. The length of the rings M
increases upwards. Notice that even for moderate values of pth we
obtained substantial slowing down. For M ¼ 512 the relaxation time Tr
at pth¼ 0.4 (yellow dotted line) is five times larger than Tr at pth¼ 0 (red
dotted line).
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the polymer conformation. Previous work conrmed that the
number of loops in lattice animal conformations does not
represent a critical quantity,16,34 i.e. the number remains
constant as the length of the rings increases. Here we want to
stress that, in our model, self-threadings are not completely
equivalent to loops. One can see this by looking at Fig. 1(e). As
one segment threads through another, we do not change the
functional unit of the interacting beads, e.g. the two ends
threading through each other in the gure remain distinct ends
which, computationally, is implemented by stacking the beads
on top of each other. In fact, as shown in Fig. 7, for every value of
pth > 0 we obtain hThi �M in the largeM limit. This result clearly
states that an abundant number of self-threading will emerge as
the length of the rings increases, ultimately hindering the
motion of the rings by pinning more and more ends.

In Fig. 8 we show the equilibrium statistics of the fraction of
free ends (i.e. ends that are not pinned and can contribute to the
ring motion) over the total number of ends in a lattice animal.
The number of free and pinned ends are related by the fact that
the sum of them must be equal to the total number of ends, i.e.
hNei ¼ hNfei + hNpei. We observed (data not shown) that the
number of ends scales linearly with the length M. Of these, a
fraction hNfei/hNei is free to retract, while a fraction 1 � hNfei/
hNei is threaded, or pinned, and hence not free to retract. In
Fig. 8 we show that as the length of the rings increases, the
fraction of free ends decreases and this effect is more evident as
pth is closer to 1. As the number of ends that can contribute to
the motion becomes smaller, we expect the dynamics to become
slower, too. In the next section we study how the presence of
self-threadings affects the relaxation of the chains.
3.4 Relaxation dynamics

The slowing down due to self-threading of the chain is apparent
from the plot of the relaxation time of the chain (see Fig. 9). This
increases dramatically with the chain size, with a power law
which appears to depend on pth. In Fig. 10 we show the relax-
ation time Tr as a function of the fraction of pinned ends hNpei/
hNei ¼ 1 � hNfei/hNei. One can observe that, compared to the
5942 | Soft Matter, 2014, 10, 5936–5944
value at pth ¼ 0, the relaxation time at pth > 0 can be substan-
tially larger. ForM¼ 512, even at moderate values of pth one can
observe a signicant slowing down, for instance in Fig. 10 we
show that Tr(pth ¼ 0.4) (yellow dotted line) is roughly ve times
larger than the relaxation time at pth¼ 0 (red dotted line), which
could easily be observed experimentally.

Finally, we study the resistance of the threadings by taking
fully equilibrated congurations with pth > 0, and turning the
free parameter pth to zero. In other words, we forbid the creation
of new pinned sites in order to study the time-scale required for
the self-threadings to relax. We report our ndings in Fig. 11
and 12. In Fig. 11 we plot the threading relaxation function
Gth(t) as a function of time t. This represents the average frac-
tion of self-threadings present t time-steps aer we set pth ¼ 0.
We argue that if the self-threadings were uncorrelated with
each-other, we would expect a exponential decay of Gth(t) from
Gth(t ¼ 0), which equals one by denition of Gth, to zero. In
contrast, aer an initial drop, we observe a very slow power law
decay on the time-scales comparable with the chain's longest
relaxation times. Such behaviour is quite reminiscent of the
This journal is © The Royal Society of Chemistry 2014
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Fig. 12 Numeric integral of Gth(t), hth ¼
ðN
0
GðtÞdt. Independent of the

value of pth, the data points are fitted by the power law sth � Ma, with

a ¼ 3 for M < 128 and a ¼ 3.5 for M > 128. The arrow at M ¼ 512

indicates that the values of hTh for the longest rings represent only a

lower bound as we could not observe the removal of all the threadings

within the simulation run time.

Fig. 11 Fraction of threadings present t time-steps after that pth is
turned off for M ¼ 512 and different values of pth used to bring the
system to equilibrium. Gth(t) shows a slow decay that lasts for several
decades. This suggests the presence of a hierarchical structure of self-
threadings and long-lived correlations affecting the long time
dynamics. For the longest rings all the threadings did not disappear in
the simulation run times accessible to us. (inset) Gth(t) for pth ¼ 1 and
different values of M.
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reptating mechanism for linear chains, where the entanglement
with the tube has to be removed one segment at a time starting
from the ends of the chain. We argue that in our model, while
the chains can diffuse in an amoeba-like fashion in space, i.e. by
generating new protrusions at any point along their backbones,
they are forced to undergo a process that it is more similar to
reptation, i.e. diffusion along the backbone, to release self-
threadings. This suggests that self-threadings create a nested
network of constraints that is signicant on the time-scales of
the ring motion. For the longest rings, we could not observe the
removal of all the threadings, even at very long times (see
Fig. 11).

The difference between rings in a gel and linear polymers is
that new ends can be formed everywhere along the ring contour,
so that no real tube can conne the ring diffusion in space.
This journal is © The Royal Society of Chemistry 2014
Nonetheless, self-threadings have to be removed in a hierar-
chical way for the chains to diffuse freely. As shown in Fig. 11,
this process can take a time comparable to the longest relaxa-
tion time of the chains. The equivalent of the zero-shear
viscosity for the threadings is computed as the numerical

integral of Gth(t), i.e. hth ¼
ðN
0
GðtÞdt (see Fig. 12). Its value

seems to be weakly dependent on the value of pth and to scale as
hth � Ma, with a $ 3. For the longest rings, we could compute
only the lower bound of hth, as the curves in Fig. 11 do not decay
to negligible values within the simulation window. This is
indicated in Fig. 12 by the arrow coming out the data points at
M ¼ 512. This is consistent with the fact that self-threadings
represent long-lived correlations on the chain motion and
represent severe constraints on the dynamics of very long
chains in a gel.

4 Conclusions

We presented a kinetic Monte-Carlo algorithm to simulate a
dilute solution of ring polymers in a gel. This algorithm
reproduces the known results for rings in a gel4,6 and adds the
possibility of taking into account self-threadings. The static and
dynamic properties of the rings have been studied by tuning the
free parameter pth. We observed a drastic change in the polymer
behaviour (see Fig. 3) as pth / 1. In particular, we observed a
sub-diffusive behaviour of the mean square displacement of the
centre of mass (hd2rCM(t)i � tx with x < 1) which crossovers to
free diffusion (x ¼ 1) only at longer times. The length-scales
associated with the crossover agree with previous studies of
systems of rings with similar topological constraints.11 The
severe slowing down observed in the polymers' dynamics is
caused by the presence of long-ranged and long-lived correla-
tions which take the form of self-threadings (see Fig. 4, 9 and
11). Such constraints on the polymer diffusion are intimately
related to the fact that we are studying rings, as for any other
shape (which do not include the presence of closed contours)
such slowing down in the dynamics is not expected. We observe
that even for moderate values of pth the relaxation time of the
rings can be almost one order of magnitude larger than the case
without threadings (see Fig. 10). The number of these self-
threadings is found to scale extensively with the size of the
chains M, which ensures that these can be prolic even for
small pth for long enough chains (see Fig. 7). This suggests that
self-threadings can be relevant for a complete understanding of
ring diffusion in a gel. It is worth noting that we expect the
effects of self-threadings on the ring dynamics to become
measurable experimentally only for gels that do not contain
dangling ends. Isolating the effect of slowing down caused by
“impalement” of the rings22 from that caused by self-threadings
can, in fact, be difficult experimentally, as very little is known
about the process of impalement of rings from the gel's
dangling ends (and it is a focus of future work). We argue that
these self-threadings might be more easily observed by
employing a micro-lithographic array of obstacles.37 It is worth
reminding that one can think of pth as an effective second virial
coefficient that regulates the pair interaction. In light of this, we
Soft Matter, 2014, 10, 5936–5944 | 5943
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argue that pth might be tuned by acting on the temperature. In
general, we expect the value of pth to be small, hence we
conjecture that self-threadings represent a real hindering on the
dynamics only of very large polymers, i.e. of order of thousands
of Kuhn segments. In terms of DNA plasmids, where a Kuhn
length is lk � 100 nm we expect the self-threadings to become
relevant in the dynamics for mega-base sized DNA plasmids,
which can be analysed with a very sparse gel to avoid breaking
the samples. Finally, we suggest that such self-threadings can
also contribute to the process of “irreversible self-trapping” of
polymers in a gel.20,22,38 In light of our results, we argue that ring
polymers can easily become irreversibly self-trapped by under-
going self-threading and then by being pulled taut around the
gel structure by an electric eld (see Fig. 1(f)).
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