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Abstract – The role of recycling in the control of membrane domains is a contentious issue
and currently an open research question. In this context, we study the coarsening of strongly
microphase-separated membrane domains in the presence of recycling of material. The dynamics of
cluster size distribution is studied under both scale-free and size-dependent recycling. Closed-form
solutions to the steady-state distribution and its associated moments are found in both cases. For
the size-independent case, the time evolution of the moments is analytically obtained, providing
exact results for their corresponding relaxation times. Since these moments and relaxation times
are measurable quantities that may be determined by comparison with experimental data, our
results provide a framework with which to understand and assess the interplay between membrane
recycling and domain formation.

Copyright c⃝ EPLA, 2018

Biomembranes are highly dynamic two-dimensional sys-
tems [1], consisting of many different lipids and proteins,
that are continuously exchanged with the rest of the living
cell by the secretion and absorption of vesicles of ap-
proximately 50–200 nm in diameter [2]. This cellular re-
cycling of membranes leads to a complete turnover of its
constituents in about 9–12 minutes [3]. In addition, the
membrane components are found to be inhomogeneously
distributed [4–6], where certain lipids and proteins clus-
ter into small-scale domains with a radius of few tens of
nanometers [7–10]. These supermolecular structures are
free to diffuse throughout the membrane, coalescing into
larger domains as they meet [7]. They are believed to be
involved in controlling various biological processes, such as
signal transduction, protein sorting, and endocytosis [10].
As lipid phase separation can occur in model systems of
multi-component membranes, the clusters observed in liv-
ing cells have often been linked to microphase-separated
lipid domains [11]. Nonetheless, the characteristic size of
the latter is much larger than the nanoscale clusters found
in vivo. This is expected as phase separation in a two-
component mixture manifests itself by the appearance of
separated domains (below a critical temperature), which
then grow until they reach the size of the system, without
any intermediate stable sizes [12].

This simple thermodynamic argument makes the for-
mation of membrane nano-domains somewhat surprising.
A number of mechanisms have been put forth to explain
their sub-micron scale [10]. This includes the effects due
to cytoskeleton pinning, binding of cross-linkers, or extra-
cellular adhesion [4], which limit through their attachment
the growth of clusters [13]. Moreover, their growth may
also be avoided if there is a repulsion between domains as
they encounter each other, such as electrostatics [14] and
membrane-mediated interactions induced by hydrophobic
mismatch [15–17] or by curvature [18,19]. Another hy-
pothesis proposes that the membrane nano-clusters are
a two-dimensional microemulsion caused either by an
explicit edge-actant [20–23], reducing the line tension as-
sociated with the domain, or a result of a structural mod-
ulation in the membrane properties [24], e.g., the interplay
between membrane composition and its curvature [25–28].
Others have hypothesized that these sub-micron hetero-
geneities can be viewed as near-critical fluctuations in the
membrane composition [29,30].

All of the above mechanisms assume that the sys-
tem is in thermodynamic equilibrium. However, mem-
branes in living cells are active systems [31], which can
be driven far from equilibrium, e.g., by cytoskeleton pro-
cesses [32] and membrane recycling [33]. The latter
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Fig. 1: (Color online) (a) Schematic diagram of a planar mem-
brane that is composed of two species, depicted by blue and red
colors. The latter constituent phase-separates into membrane
domains of different sizes that range between the characteristic
areas aS ≃ 10 nm2 and aL ≃ 104 nm2. Beside their in-plane
diffusive dynamics, the membrane is subjected to a continuous
recycling, where the domains are brought to (green downward
arrows) and removed from (pink upward arrows) the mem-
brane through the transport of various vesicles. (b) Diagram
of the membrane recycling scheme, where domains are injected
into the membrane at random with a flux jon exp(−a/aS)/aS .
Also, they are randomly removed from the membrane with a
constant rate joff (blue), as well as an explicit size-dependent
removal rate foff [1 − exp(−a/aL)], where foff > 0 is depicted
by the purple curve, plateauing to joff + foff , and foff < 0 is
plotted in green, decreasing at large a to joff − foff . Since the
outward rate cannot be negative, we restrict to |foff | > joff .

has been quantitatively studied by means of reaction-
diffusion equations [34–38] and Smoluchowski coagulation
equations [39–41]. Heuristically, the effect of recycling
consists in a decrease of the domain lifetime, reducing the
chance of a micro-sized aggregate to form as the recycling
rate is increased.

In this letter, we study the role of membrane recycling in
the formation and regulation of nano-clusters. We develop
a continuum coagulation theory of the domain dynamics
under a continuous exchange of membrane components
with an external (or internal) reservoir [39–41]. In con-
trast to the previous studies of Smoluchowski coagulation
processes [39–46], the active recycling terms (sources and
sinks) are chosen to be sized-dependent. This is of bio-
logical significance, as certain recycling pathways target
domains from a highly specific range of sizes [6,31,47–49].

We consider an infinite planar membrane populated by
two membrane species, which undergo phase separation,
giving rise to domains of various sizes as shown in fig. 1.
Hereinafter, the scission events are assumed to be rare,
corresponding to a regime of large line tension associ-
ated with the periphery of the domain. This line tension
characterizes the energy cost for having a finite interface
between the different phases. In the case of microphase
separating components the regime of interest is high line

tension, while the low tension case resembles a gas of non-
interacting (mostly monomeric) clusters. Thus, the kinet-
ics of the aggregates is dominated by the fusion events [39].
Under a continuous recycling, the mean-field dynamics of
the domain size distribution is governed by [44]

∂P

∂t
= R(a, t) −

∫ ∞

0
G(a, a′)P(a, t)P(a′, t) da′

+
1

2

∫ a

0
G(a, a′)P(a′, t)P(a − a′, t) da′, (1)

where P is a density function at time t for the number-
per-area of domains of size a (in area units).

By assuming that two distinct membrane domains coa-
lesce whenever they come into contact through diffusion,
the kernel G(a, a′) in eq. (1) can be regarded in the dilute
limit as a constant proportional to the diffusion coeffi-
cient D of a typical membrane cluster. The latter depends
only weakly (logarithmically) on the domain size a, pro-
vided that a ! aSD, where aSD is the area corresponding to
the Saffman-Delbruck length [50]. Since this is typically
found to be aSD ≃ 105–106 nm2, the size-dependence of
the fusion rate can be neglected throughout, as the clus-
ters of interest are smaller than aSD (see fig. 1), and those
greater than aSD are exponentially suppressed. Since the
diffusion constant is the only parameter that describes
the intramembrane dynamics, G is chosen to be identi-
cally D ≃ 105 nm2/s, fixing the time scale in this model.
Here, R(a, t) is a function that controls the recycling, i.e.,

R(a, t) =
jon
aS

e− a

aS −
[

joff + foff

(

1 − e− a

aL

)]

P(a, t), (2)

where single domains are brought to the membrane at ran-
dom with a flux jon and a size drawn from an normalized
exponential distribution. Here, aS is the characteristic size
of domains that are injected into the membrane, and it is
henceforth used to set area scale in our model. Its value
depends on the specific mechanism of recycling at hand.
Nonetheless, in most biological cases, the recruitment of
components to the membrane occurs at a monomeric level
(e.g., single proteins), and thus we choose aS ≃ 10 nm2.
Moreover, entire domains are stochastically removed irre-
spective of their size with a constant rate joff . In addition
to this, an explicit size-dependent outward flux is included,
where the removal rate foff is exponentially small for do-
main sizes a ! aL ≃ 104 nm2 (note that this is also smaller
than aSD). Depending on its sign, this could lead to an en-
hanced recycling at large scales if foff > 0, or a reduction
if foff < 0. However, in the latter case, foff cannot be
larger in magnitude than joff , so that the overall outward
flux remains non-negative, as shown in fig. 1(b). The for-
mer scenario (foff > 0) is perhaps of greater biological
relevance, due to the size associated with the endosomes,
which are vapoured in the phase-separated component [6].
For example, this has been observed for the recycling of
E-cadherin clusters, where dynamin-dependent endocyto-
sis targets large domains, inducing a sharp size cut-off past
a critical size [47–49].
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To understand the solution of eq. (1) we first focus on
the size-independent recycling scheme, namely foff = 0.
This proves to be tractable in Laplace space [51], where
we define the dimensionless (integral transform) function

P̂(λ, t) = aS

∫ ∞

0
P(a, t)e−aλ/aS da. (3)

For clarity, it is helpful to define the following rescaled
quantities at the outset: τ = tD/aS, Jon = jona2

S
/D,

and Joff = joffaS/D. Therefore, this yields a nonlinear
differential equation of the form

∂P̂

∂τ
=

Jon

1 + λ
− [ρ(τ) + Joff ]P̂(λ, τ) +

1

2
P̂2(λ, τ), (4)

where ρ(τ) = P̂(λ = 0, τ) is the total number-per-area
of clusters (non-dimensionalised by aS). Furthermore, by
evaluating eq. (4) at λ = 0, we find that

∂ρ

∂τ
= Jon − Joffρ(τ) −

1

2
ρ2(τ). (5)

By using the initial condition ρ0 = ρ(τ = 0), the solution
to the above equation can be written, see Supplementary
Material Supplementarymaterial.pdf (SM), as follows:

ρ(τ) = Q∞

(ρ0 + Joff) + Q∞ tanh[ τQ∞

2 ]

(ρ0 + Joff) tanh[ τQ∞

2 ] + Q∞

− Joff , (6)

where Q∞ =
√

J2
off + 2Jon . To find P̂(λ, τ), we define a

function ψ(λ, τ) = ρ(τ) − P̂(λ, τ), which by substitution
into eq. (4) yields the following equation:

∂ψ

∂τ
=

λJon

1 + λ
− Joffψ(λ, τ) −

1

2
ψ2(λ, τ). (7)

This has the same form as before, and its solution is

ψ(λ, τ) = Qλ
(ψ0(λ) + Joff) + Qλ tanh[ τQλ

2 ]

(ψ0(λ) + Joff) tanh
[

τQλ

2

]

+ Qλ
− Joff , (8)

where ψ0(λ) = ψ(λ, τ = 0) and Qλ =
√

J2
off + 2λ

1+λJon.

Higher order moments of P can be determined by differ-
entiating P̂(λ, τ), or equivalently −ψ(λ, τ), with respect
to λ and then evaluating at λ = 0. Particularly, its first
moment φ(τ) =

∫ ∞

0 aP(a, τ)da = − ∂
∂λ P̂(λ = 0, τ), corre-

sponding to the area-fraction of domains, is given by

φ(τ) =
Jon

Joff

[

1 − e−τJoff

(

1 −
Joff

Jon
φ0

)]

, (9)

where φ0 = ∂
∂λψ0(λ = 0). This allows us to find the time

evolution of the mean domain size A(τ) = aSφ(τ)/ρ(τ).

Similarly, the second moment, i.e. σ(τ) = ∂2

∂λ2 P̂(λ = 0, τ),
can also be computed with the initial value σ0 (see SM).
Hence, this also gives us the full dynamics of the standard
deviation, W(τ) = aS

√

σ(τ)/ρ(τ) − φ2(τ)/ρ2(τ), that is
associated to the density P of membrane clusters.

Fig. 2: (Color online) (a) Dynamics of the mean area A(t)
of clusters, and (b) its associated standard deviation W(t).
The initial conditions are set by considering a scenario where
a step-change at t = 0 is made in either Jon or Joff after
the system has reached its steady state. Choosing the typi-
cal physiological rates, Jon = 10−7 and Joff = 10−6, we make
the following step-like changes: 50% decrease in Joff (blue);
50% decrease in Jon (red); and 50% decrease in both Jon and
Joff (green). Due to these perturbations the system reaches a
new steady state after a transient time; see the dashed lines
(same colour convention).

So far, the dynamics of the moments ρ(τ), φ(τ) and σ(τ)
has been analytically found in terms of the initial (arbi-
trary) values ρ0, φ0, and σ0, respectively. These terms
can be fixed by considering that the density P at τ = 0
is given by a steady-state configuration with the rates Jon

and Joff . In fig. 2, we show how the entire system will
relax after an initial (step-like) perturbation in the values
of the recycling rates. Namely, we compute the response
of A and W to a decrease by α = 50% in Jon (red), or
a reduction by β = 50% in Joff (blue), or by simulta-
neously decreasing both flux rates by 50% (green). This
shows that diminishing the removal rate Joff leads to a
monotonic increase in both A and W , as fewer clusters
are depleted. For long times, a reduction by α in the in-
jection rate Jon results in a diminution of both A and W .
Interestingly, at short times, the change in Jon by a fac-
tor α yields an initial (transient) rise, regardless of the
decrease in Joff by β. This can be explained by Taylor
expanding A(τ) and W(τ) for small values. For instance,
A(τ) = A(0) + 1

2τaSφ∞(1 − α) + O[τ2], which shows that
the linear term is positive if α < 1 and independent of β.
Although the expansion is more cumbersome in the case
of W , the same feature is preserved at first order (see SM).

Such an assay, as shown in fig. 2, could plausibility be
performed experimentally by up-regulating or knocking
down key elements of the synthesis or endocytic pathway.
Since the relaxation times of the moments can be on the
order of tens of minutes (cf. fig. 2), they can be measured
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via single molecule super-resolution imaging techniques,
such as stimulated emission depletion microscopy (STED),
and photoactivated localization microscopy (PALM) [49].
This allows us to estimate Jon and Joff by comparison with
the decay rates of (6) and (9). Another method that can
be used to infer the recycling rates is to obtain experi-
mentally the steady-state values of ρ(τ) and φ(τ), namely
ρ∞ = Q∞ −Joff and φ∞ = Jon/Joff , respectively. This can
be particularly helpful if the experimental setup lacks the
temporal resolution to measure the relaxation times.

The steady-state value of the density P̂(λ, t) is given by
P̂∞(λ) = Q∞ − Qλ, which can be exactly inverse Laplace
transformed, and a closed-form solution is found to be

P∞(a) =
Jone−a(1−Ω)/aS

a2
S
Q∞

[

I0

(

aΩ

aS

)

− I1

(

aΩ

aS

)]

, (10)

where Ω = Jon/Q2
∞

, and I1 and I0 are the modi-
fied Bessel functions of the first kind of order one and
zero [51]. Figure 3(a) shows a few plots of eq. (10) for phys-
iologically reasonable values of Jon and Joff . This further
illustrates that small finite size domains can be found for
a wide range of recycling rates (see inset plot of fig. 3).
P∞(a) shows a power-law behaviour with an exponential
cut-off [45], which is asserted by asymptotically expanding
eq. (10),

P∞(a) ≃ a−3/2e−a/aC

√

aSJon/(8πΩ2), (11)

where aC = aS(1 + 2Jon/J2
off) ≃ 4A2

∞
/aS, and A∞ is the

steady-state value of the mean cluster size. As aC ≫ A∞,
the mean area lies within the power-law regime. Notice
that the cut-off aC corresponds to the size at which the
intramembrane dynamics (governed by the diffusion con-
stant D) becomes comparable to the recycling kinetics.
Hence, the scaling of aC on the rates Jon and Joff could
also be deduced from dimensional analysis.

Biomembrane domains can exhibit various types of size
distributions, reflecting distinct mechanisms of regulation
and formation [49]. For instance, the power-law distri-
bution in eq. (11) has been experimentally observed in
vivo for the size of E-cadherin clusters, which has been
measured by PALM microscopy [47–49]. The domains of
E-cadherin are continuously recycled, and their size distri-
bution shows an exponential cut-off for large clusters [47].

We now consider the size-dependent recycling scheme,
where foff ̸= 0 in eq. (2). By Laplace transforming the
governing equation and non-dimensionalising as done be-
fore, we derive a similar expression to eq. (4) with an ad-
ditional term on the right-hand side of the equation that
is given by F(λ, τ) = Foff [P̂(λ⋆ + λ, τ) − P̂(λ, τ)], with
Foff = foffaS/D and λ⋆ = aS/aL. Thus, this leads to a
nonlinear differential equation with a recurrence-like re-
lation for the continuous variable λ. Such equations are
difficult to solve exactly or even numerically. Nevertheless,
further analytical progress can be made by assuming that
the ratio λ⋆ ≪ 1 (typically λ⋆ ≃ 10−3), which yields that

Fig. 3: (Color online) (a) Steady-state size distribution P∞(a)
for the size-independent recycling at a fixed area coverage
φ∞ = Jon/Joff . The recycling rate Joff is chosen such that
the average area A∞ from the distribution P∞(a) (as indi-
cated by the vertical dotted lines) corresponds to the typical
size of phase-separated domains observed in living cells, i.e.,
Joff = 10−6. The latter is found by plotting the mean area
A∞ as a function of Joff at a fixed area-fraction φ∞, see the
inset plot (same colours). The grey dashed lines are the up-
per and lower bounds to the physiological values of Joff and
the area πR2

domain of clusters. P∞(a) displays an exponential
cut-off for large a, and a power-law behaviour, P∞(a) ∼ a−3/2

for intermediate values (a " aS), as shown by the grey dashed
line. (b) The steady-state distribution for a size-dependent
recycling scheme, parametrized by the rate Koff (see text),
with Jon = 10−7 and Joff = 10−6. This retrieves the size-
independent case in the limit of Koff = 0, as shown by the
red curve, which is equivalent to φ∞ = 0.1 of panel (a). This
shows that a non-zero value of Koff decreases the size at which
the domains are exponentially recycled, reducing the power-
law regime (see the grey dashed line). The solid lines corre-
sponds to Koff > 0, while the dashed curves are Koff < 0.
When |Koff | ≫ Joff , the distribution tends to an exponential
function. The vertical dotted lines represent the mean domain
sizes for Koff > 0 (same colour convention).

F(λ, τ) = Koff
∂
∂λ P̂(λ, τ), with Koff = λ⋆Foff . Hence, the

steady-state equation of P̂(λ, τ) is given by

Koff
∂P̂∞

∂λ
= (ρ∞ + Joff)P̂∞(λ) −

1

2
P̂2

∞
(λ) −

Jon

1 + λ
, (12)

which reduces to a special case of the associated Laguerre
differential equation [51]. The solution of eq. (12) depends
on the sign of Koff , and it can be written in terms of the
Kummer function U of the second kind (if Koff > 0), and
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Fig. 4: (Color online) Ternary plots of the fractional changes (indicated by the prefix ∆) in (a) the injection rate around the
value J(R)

on = 10−5, (b) the size-independent removal rate about J(R)

off
= 10−4, and (c) the size-dependent outward rate around

K(R)

off
= 10−8, which result from the fractional changes (or errors) in the moments of the steady-state domain size distribution;

namely, the total number-per-area of clusters ρ(R)
∞ ≈ 4×10−3, their area-fraction φ(R)

∞ ≈ 0.1, and the second moment σ(R)
∞ ≈ 103

of the distribution, which are computed in the linearised regime (see main text) for the values of the recycling rates mentioned
above.

the generalized Laguerre function L (if Koff < 0); namely,

P̂∞(λ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

JonU [1 − κ; 1; (1 + λ)J
κ ]

KoffU [−κ; 0; (1 + λ)J
κ ]

, Koff > 0,

−JonL[κ − 1; 0; (1 + λ)J
κ ]

κKoffL[κ; −1; (1 + λ)J
κ ]

, Koff < 0,

(13)

where we also define that κ = Jon/[2Koff(ρ∞ + Joff)] and
J = 1

2Jon/K2
off (see SM). Since these solutions depend on

the undetermined constant ρ∞, its value can be found by
requiring the boundary condition ρ∞ = P̂∞(λ = 0), lead-
ing to a characteristic equation that needs to be solved
first (see SM). Figure 3(b) shows the numerical inversion
of the Laplace transform in eq. (13) using a multi-precision
computing algorithm [52]. As |Koff | is increased, the expo-
nential cut-off of the distribution is significantly decreased,
diminishing the power-law regime over which the system
is scale-free, as well as reducing the average domain size.
Also, at fixed values of Jon and Joff , the critical area aC

and the mean area A∞, when Koff < 0, are both smaller
than those found in the case of Koff being strictly positive.

For Koff > 0, an asymptotic solution of eq. (13) can be
found by expanding to first-order in λ⋆, resulting in

P̂∞(λ) ≃ (Q∞ −Qλ)

[

1+
ΩKoffQ∞

JoffQ2
λ

]

−
JonKoff

(1 + λ)2Q2
λ

, (14)

which retrieves the previous result as Koff = 0 (see SM).
This can be exactly inverse Laplace transformed, which
gives (see SM): P∞(a) = −Koffa−2

S
e−a(1−Ω)/aS sinh(aΩ

aS
)

+ Jon
Q∞

a−2
S

e−a(1−Ω)/aS [Ω+I0(
aΩ
aS

) − Ω−I1(
aΩ
aS

)] + O[λ2
⋆],

where Ω± = 1 ± ΩKoff/Joff . Also, from the derivatives of
eq. (14) with respect to λ at zero, the moments of P can
be computed (see SM). Thus, the linearised form in λ⋆ of
the number-per-area of clusters is given by

ρ∞ ≃ Q∞ − Joff − JonKoff/(Joff Q∞) + O[λ2
⋆], (15)

and their area coverage is found to be

φ∞ ≃ Jon/Joff − JonKoff(Jon + 2J2
off)/J4

off + O[λ2
⋆]. (16)

Moreover, higher order moments may also be calculated,
but their expressions become increasingly more cumber-
some; for instance, the second moment is given by

σ∞ ≃ − JonKoff(6J4
off + 10JonJ

2
off + 5J2

on)/J6
off

+ Jon(Jon + 2J2
off)/J3

off + O[λ2
⋆]. (17)

These moments are experimentally measurable, and this
allows us to estimate the values of Jon, Joff , and Koff

by simultaneously solving the eqs. (15), (16), and (17).
To exemplify this inference problem, we study the re-
sponse of the recycling rates to changes in the moments.
Firstly, Jon, Joff , and Koff are selected such that they re-
trieve physiological values for the area-fraction and the
mean area of domains. Namely, we choose J (R)

on = 10−5,
J (R)

off = 10−4 and K(R)

off = 10−8 as the reference values,
which gives us that ρ(R)

∞ ≈ 4 × 10−3, φ(R)
∞ ≈ 0.1 and

σ(R)
∞ ≈ 103, resulting in an average area of membrane clus-

ters A(R)
∞ ≈ 200 nm2. Here, we set K(R)

off to be much smaller
than the other rates, so that the linear regime in λ⋆ re-
mains valid. By using X as a placeholder for the quantity
of interest, we define the fractional change in X as fol-
lows ∆X = (X (R) −X )/X (R). Secondly, we examine how a
fractional change in the measured values of the moments,
i.e., ∆ρ∞, ∆φ∞ and ∆σ∞, leads to a corresponding frac-
tional variation in the rates around their reference val-
ues, inferred from eqs. (15)–(17). Lastly, to illustrate this,
we project the points on a ternary diagram, as shown in
fig. 4, so that the overall fractional variation is given by
∆ρ∞ +∆φ∞ +∆σ∞ = 5%. The plots show the sensitivity
of the inferred rates to changes in the moments. In par-
ticular, we find that Koff exhibits larger changes about its
reference value than the other rates.
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Although the collision kernel G(a, a′) has been regarded
as a constant, this approximation breaks down, if the
dilute limit is no longer satisfied, or if the size of the
membrane domains a ≫ aSD, as their diffusion coefficient
now obeys the Stokes-Einstein relation (D ∼ a−1). By
means of scaling arguments [44], and by also assuming
that the coagulation kernel G is a homogeneous function of
degree η, i.e., G(a/ℓ, a′/ℓ) = ℓ−ηG(a, a′), it can be shown
that the steady-state distribution P∞(a) ∼ a−γ , where the
power-law exponent γ = (3+η)/2 [43]. For instance, if the
diffusion of membrane clusters follows the Stokes-Einstein
relation, we have G(a, a′) ∼ 1/a + 1/a′, and thus we ex-
pect that P∞(a) ∼ a−1. Note that this also retrieves our
scaling result in eq. (11) when the exponent η = 0.

In summary, we developed an out-of-equilibrium model
for the in-plane dynamics of membrane domains, where
their stability and sizes are mediated by the exchange of
membrane components with the exterior. The dynamics
and the steady-states of the cluster size distribution are
studied, subject to a size-dependent recycling. This model
is sufficiently general, and can be applicable to a variety
of other aggregation phenomena. Our analysis suggests
a number of possible methods to experimentally test this
model, and to generally assess the role of recycling in the
formation and the control of membrane domains.

∗ ∗ ∗

We acknowledge stimulating discussions with Dr. P.
Sens, and funding from Simons Foundation (SAR) and
EPSRC under Grant No. EP/I005439/1 (MST).

REFERENCES

[1] Engelman D. M., Nature, 438 (2005) 578.
[2] Kobayashi T., Gu F. and Gruenberg J., Semin. Cell

Dev. Biol., 9 (1998) 517.
[3] Hao M., J. Biol. Chem., 275 (2000) 15279.
[4] Arumugam S. and Bassereau P., Essays Biochem., 57

(2015) 109.
[5] Hancock J. F., Nat. Rev. Mol. Cell Biol., 7 (2006) 456.
[6] Simons K. and Sampaio J. L., Cold Spring Harbor Per-

spect. Biol., 3 (2011) a004697.
[7] Lavi Y., Edidin M. and Gheber L. A., Biophys. J., 93

(2007) L35.
[8] Lenne P.-F. et al., Soft Matter, 5 (2009) 2841.
[9] Greenfield D. et al., PLoS Biol., 7 (2009) e1000137.

[10] Destainville N., Schmidt T. H. and Lang T., Curr.
Top. Membr., 77 (2016) 27.

[11] Veatch S. L. and Keller S. L., Biochim. Biophys. Acta,
1746 (2005) 172.

[12] Bray A., Adv. Phys., 43 (1994) 357.
[13] Yethiraj A. and Weisshaar J. C., Biophys. J., 93

(2007) 3113.
[14] Liu J., Qi S., Groves J. T. and Chakraborty A. K.,

J. Phys. Chem. B, 109 (2005) 19960.
[15] Wallace E. J., Hooper N. M. and Olmsted P. D.,

Biophys. J., 90 (2006) 4104.
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