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ABSTRACT: We present the theory for a long polymer rod immersed in a nematic environment and find
the effects of a nematic solvent on small fluctuations of the tangent vector perpendicular to the rod axis.
We are thus able to calculate the physically interesting properties associated with our combined polymer
and nematic system. These include tangent-tangent correlation functions and the scattering structure
factor, which reproduces known qualitative experimental results rather well. As one biological application
of our model, we analyze the possible effects of a weak nematic solvent on the mechanical properties of
individual hemoglobin fibers. As another biological application, we model the effects of a strong nematic
environment, provided by fd virus, on the elastic and conformational properties of wormlike micelles.
The work presented here can be viewed as constituting a microscopic model derivation of previous, more
phenomenologically inspired, theories that deal with similar polymer/nematic systems. Interestingly, we
find that a simple boundary condition of the nematic order at the rod surface agrees well with available
experimental data.

1. Introduction
It is of general physical interest in soft condensed

matter, and often of considerable biological interest, to
take into account the effects of a nematic environment
on the conformational, elastic, and mechanical proper-
ties of single polymer chains.1-3 Many biological mac-
romolecules, such as DNA,4-6 proteins,7-9 and TMV,10-12

are long, semiflexible, slender rods where the role of
nematic order can be important. In this paper we
present a theoretical model for a single semiflexible
polymer rod immersed in a nematic solvent. Our model
differs from some previous theoretical approaches to this
topic,13-18 in that we do not posit a phenomenologically
inspired (albeit well motivated) potential of nematic
origin for our polymer chain from the outset. Rather,
we derive an effective potential for tangential fluctua-
tions of our polymer rod by “integrating out” the degrees
of freedom associated with the nematic field, subject to
the constraint that (at the rod’s surface) the rod tangent
vector must align on average with that of the nematic
director. The nematic field is taken to be governed by
the usual Frank elasticity free energy.1-3 In section 2
we outline the theory used and find the effect of a
nematic solvent on tangential rod fluctuations perpen-
dicular to the long axis of the rod. To physically
elucidate fully the calculated effect of nematic order on
our polymer rod, in section 3 we derive expressions for
the tangent-tangent correlation functions of our poly-
mer rod as well as the average end-to-end distance
expected. In section 4 we present the theoretically
expected structure factor for a polymer rod in a nematic
solvent and reproduce the experimentally observed
characteristic “bow-tie” scattering patterns.19-23 In sec-
tion 5, and as one application of our model, we examine
the mechanical properties of hemoglobin fibers.24-26

Under the physically reasonable assumption of the
presence of a fairly weak nematic solvent, we are able
to plausibly account for previously observed discrepan-
cies24,25 in the expected persistence lengths of hemoglo-

bin fibers of differing lengths. As another biological
application, we model the effects of a strong nematic
environment of fd virus on the elastic and conforma-
tional properties of wormlike micelles.18

2. Theory
The total free energy describing our combined poly-

mer and nematic system, Ftotal, is given by the sum of
three contributions:

The first contribution, Fn, is given by the usual Frank
elasticity term1,2 in the one constant approximation:

where n(x) is the nematic director vector field (see
Figure 1).We have also included a local auxiliary field,
R(x), so as to maintain the constraint n2(x) ) 1. The
second term, Ft, is given by the usual elastic contribu-
tion of a semiflexible polymer chain:3

where t(s) ) ∂x(s)/∂s is the polymer rod tangent vector
(see Figure 1). We have again included an additional
local auxiliary field, â(s), to enforce the constraint t2(s)
) 1. The third component of the total free energy, FΛ,
represents the interaction of the nematic environment
with the polymer backbone and is given by

where the value of the director field on the rod itself is
given by n(x(s)), with x(s) being the position vector of
the rod (see Figure 1). The nematic/polymer coupling* Author for correspondence. E-mail D.R.Daniels@warwick.ac.uk.
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present in FΛ is achieved via the use of a vectorial
auxiliary field, Λ(s), which enforces a harmonic potential
(of strength Γ) for the polymer tangent vector, such that
it prefers to point in the same direction as the nematic
director field. Note that the limit Γ f ∞ corresponds to
the case of perfect coupling (or anchoring) of the nematic
director to the polymer tangent vector, at the polymer’s
surface.

We can considerably simplify matters if we make the
following parametrizations:

and concomitantly expand both vectors, t⊥ and n⊥, to
quadratic order in Ftotal. This procedure necessarily
represents a small deformation perturbation expansion
of both t around a relatively rigid rod (with long axis =
k̂) and n around a relatively well-aligned nematic (with
preferred axis = k̂). We are then therefore led to
consider only the fluctuations in our nematic/rod system
that are perpendicular (⊥) to the k̂ axis, which are
governed by the following free energy, F⊥:

Note that one great convenience of this approach, using
the above parametrizations, is that it removes any
dependence of F⊥ on our auxiliary fields R(x) and â(s).
We are now in such a position that we can integrate
out the effects of the nematic field, given by n⊥, so as to
obtain the effective free energy F′⊥:

In obtaining eq 7, we have utilized the appropriate
Fourier transform of n⊥. Before we can eliminate Λ⊥,
we need to make sense of the three-dimensional q-space
Fourier integral present in F′⊥. To this end we again
make use of a relatively rigid-rod approximation (with
long axis = k̂) and using cylindrical coordinates as
follows:

where r is the radius of our polymer rod and acts as a
short-distance cutoff for perpendicular nematic field
fluctuations. ∆æ is the difference in cylindrical polar
angle between the vectors q and x. If we also adopt the
large length limit approximation (i.e., L f ∞) and now
go over to Fourier space for the polymer chain also, then
we arrive at the following expression for F′⊥:

where K0(|p|r) is the modified Bessel function of zeroth
order. Note that in arriving at eq 9 we have implicitly
assumed that we can safely ignore any polymer rod “end
effects” that may arise due to the nematic solvent. We
will see that this assumption can be justified a poste-
riori, as the effect of the nematic solvent steadily
decreases with decreasing polymer rod length.

We now eliminate Λ⊥(p) from F′⊥, leaving us with our
final, effective free energy, F[t⊥], that describes small
fluctuations of the component of the polymer rod
tangent vector, t⊥(p), perpendicular to the polymer rod
axis (given by =k̂):

The above free energy, F[t⊥], can be viewed as constitut-
ing a “microscopic” model derivation of similar, more
phenomenologically inspired models of the effects of a
nematic solvent on a polymer rod.13-18 Furthermore, the
functional form and strength of the coupling to the
nematic environment of a polymer rod are given, using
the model outlined in this work and derived above, from
“first principles” with a minimum of phenomenological
(albeit well motivated) terms or coupling constants
appearing in the final free energy.

3. Correlations

With F[t⊥] now in our possession, we can, in principle,
calculate all of the properties of interest of a polymer
rod in a nematic solvent, for example correlation func-

Figure 1. Schematic diagram of a polymer rod (with finite
but small radius r) in a nematic solvent. The nematic director
field n(x) is denoted by the arrows, while the tangent vector
t(s) lies along the long axis of the rod. The value of the director
field on the rod itself is given by n(x(s)), where x(s) is the
position vector of the rod.
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tions. The perpendicular tangent-tangent correlator
(for Fourier modes p) is given by

As |p|r f 0 (using K0(|p|r) = - ln(|p|r)), note the
logarithmic dependence on wave-mode p present in the
second term of eq 11. Such similar, and closely related,
logarithmic behavior (termed “super” or “hyper” diffu-
sion17) was also found to be present in ref 16 when
dealing with directed polymers, in ref 18 when consider-
ing semiflexible polymers in a nematic phase of rodlike
virus, and also occurs frequently when considering the
electrostatic interactions of polymer chains (see e.g. ref
27 for further details). From eq 11 we can clearly see
that on short length scales (high p) tangent-tangent
correlations are mainly bending stiffness dominated,
whereas for large length scales (low p), the correlations
of the tangent vector become more and more strongly
influenced by the effect of the nematic solvent. Also,
from eq 11, we can explicitly see the appearance of an
important characteristic length scale for our system, l
∼ xκt/κn, which roughly demarcates the crossover be-
tween polymer stiffness (κt) and nematic (κn) dominated
behavior.

The perpendicular tangent vector correlation function
〈t⊥(s)‚t⊥(s′)〉 is given as usual (via Fourier transform) by

Furthermore, using eq 12, we can now estimate the full
tangent-tangent correlator, 〈t(s)‚t(s′)〉, as follows. Re-
calling our ansatz for t(s) from eq 5, we can ap-
proximately write

As a useful consistency check, eq 13 also satisfies the
appropriate condition of 〈t2(s)〉 ) 1 for all s. We can also
now write down the approximate expression for the
expectation value of the full end-to-end vector via

To get a better physical insight into the above correla-
tion functions, it is an illuminating exercise to consider
the following limits of interest:

3.1. Intrinsic Bending Stiffness Dominated. This
regime is given by {Γ, κn} f 0, such that the effects of
the nematic environment are completely absent, and we
recover the typical behavior of a familiar semiflexible
chain.3 In this limit, we get from above the following
results:

As a nice consistency check, note from eq 15 that we
are able to recover (using our approximations) the
canonical behavior3 of a semiflexible chain (in the
absence of a nematic): namely, that the full tangent
vector correlator, 〈t(s)‚t(s′)〉, decays exponentially with
a characteristic persistence length given by3 lp ∼ κt.

3.2. Nematic Solvent Dominated. This regime is
given by {Γ, κn} f ∞, such that the effects of the nematic
environment are completely dominant. In this limit, we
get from above the following results:

Note from eq 16 that now, in the presence of a strong
nematic solvent, the full tangent vector correlator,
〈t(s)‚t(s′)〉, decays as a power law ∼ (1/|s - s′|) for large
(s - s′). This power law decay behavior means that in
the nematic dominated phase tangent vector correla-
tions (as given by eq 16) typically decay much more
slowly than the familiar exponential decay behavior
found for tangent vector correlations in the intrinsic
bending stiffness dominated phase (as given by eq 15).

4. Scattering
In this section we examine the typical scattering

behavior expected for an isolated polymer rod in a
nematic environment, utilizing the theory detailed
above. We define the structure factor of our polymer rod
as follows:

where F(q) ) (1/L)∫0
Lds exp(iq‚x(s)) is the Fourier

transform of the polymer density. We now approximate
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12, to obtain
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where

S(qz,q⊥) depends on both qz and q⊥, and in what follows
it proves convenient to evaluate eq 19 numerically.
Shown in Figures 2-4 are plots of S(Qz,Q⊥) (where Qz
) qzL and Q⊥ ) q⊥L) for three different values of the
Frank elasticity constant, with all other constant pa-
rameters held fixed. We can see from Figures 2-4 the
characteristic “bow-tie” scattering pattern as typically
found for nematic rods.19-23 We can also see from
Figures 2-4 that as the Frank constant increases (i.e.,
the solvent/environment becomes more nematic), the
associated polymer rod scattering becomes less intense
along the Qz axis. This is consistent with the physical
picture that as the nematic order increases, the polymer
rod becomes more and more aligned along the nematic
director.19-23

5. Applications to Biological Polymers
We now apply our theory to two cases of biological

interest, which can be said to be representative of two
consistent limits of our model. Our model assumes from
almost the outset a small deformation expansion for
polymer conformations, around a relatively straight rod.
There are two limits in which such a description
remains valid. One is when the semiflexible polymer
possesses a high bending modulus (or persistence
length) and is intrinsically stiff to begin with, such that
the effects of the nematic environment can be taken to
be a small perturbation of the (already) rigid-rod
behavior. This limit will be considered in section 5.1.
The other limit is when the polymer is intrinsically
floppy and inherently more random coil like, such that
the nematic solvent must now completely dominate its
conformational properties to produce the concomitant
and necessary type of rigid-rod behavior expected. This
case will be considered in section 5.2.

5.1. Hemoglobin Fibers (Intrinsic Bending Stiff-
ness Dominated). We now apply our theory for a
polymer rod in a nematic solvent to the biologically
interesting case of the mechanical properties of single
hemoglobin fibers.24-26 Such long, slender, and rela-
tively stiff hemoglobin fibers are responsible for diseases
such as sickle cell anaemia, and it is therefore important
that we are able to characterize their elastic properties
accurately. To this end, following refs 24 and 25, we
focus on just one of the transverse (⊥) displacement
vectors, x(s), which we write in terms of discrete Fourier
modes as x(s) ) ∑p)1

∞ xp sin(pπs/L). From eq 11 we can
write down the expression for 〈xp

2〉 immediately as

from which we can also simply write down the expres-

sion for the mean-squared amplitude at the midpoint,
〈x2(L/2)〉, as
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Figure 2. Isointensity contour plot of S(Qz, Q⊥) vs (Q⊥, Qz)
with κt/L ) 10-1, L/r ) 102, ΓL ) 104, and a value of the Frank
elasticity constant given by κnL ) 3 × 10-3.

Figure 3. Isointensity contour plot of S(Qz, Q⊥) vs (Q⊥, Qz)
with κt/L ) 10-1, L/r ) 102, ΓL ) 104, and a value of the Frank
elasticity constant given by κnL ) 3 × 10-1.

Figure 4. Isointensity contour plot of S(Qz, Q⊥) vs (Q⊥, Qz)
with κt/L ) 10-1, L/r ) 102, ΓL ) 104, and a value of the Frank
elasticity constant given by κnL ) 3 × 101.

〈x2(L/2)〉 ) ∑
p)1

∞

〈x2p-1
2〉 (22)
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Experimental data on single hemoglobin fibers taken
from refs 24 and 25 are shown in Table 1. Values given
for 〈x2(L/2)〉 represent the best-fit values obtained after
averaging over many individual fibers (see refs 24 and
25 for further details). If one postulates the presence of
a weak nematic solvent, we can now straightforwardly
use eq 22 and the experimental data in Table 1 to find
κt and κn. Numerically, we find the best fit values of κt
) 102kBT µm and κn ) 13kBT µm-1 for both fibers, in
the limit of perfect anchoring of the nematic to the fiber
surface (i.e., Γ f ∞). The single value of κt obtained in
this work (where the effects of an assumed weak
nematic solvent are taken into account) is to be com-
pared with those obtained in refs 24 and 25 where the
possible effects of a nematic solvent were not taken into
account. Reference 24 and 25 find values of κt ) 240kBT
µm for the longer fiber and κt ) 130kBT µm for the
shorter fiber. A possible explanation for this discrepancy
in κt values between the work presented here and refs
24 and 25 is as follows. Without including the effects of
a postulated nematic solvent, refs 24 and 25 do a pretty
good job of predicting κt for the shorter fiber but
substantially overestimate κt for the longer fiber. With-
out including the effects of any posited nematic solvent,
refs 24 and 25 must account for the experimentally
observed midpoint deviations in the longer fiber via an
overcompensatingly high and stiff value for κt. Whereas
in the work presented here, the intrinsic stiffness of the
polymer rod (κt) remains the same, and we can plausibly
account for the experimentally observed midpoint de-
viations via assuming the presence of a relatively weak
nematic solvent (κn). Furthermore, as shown by compar-
ing this work and that of refs 24 and 25, the “stiffening”
effects of an assumed nematic solvent increase as the
length of the polymer rod increases, which also agrees
with what one would intuitively expect physically.16-18

Assuming that if the solution surrounding the fiber
were to be shown experimentally to be weakly nematic,
then it is perhaps not surprising that the value of the
Frank constant (κn) required in this work is roughly
1/200 that of typical values to be found in conventional
synthetic liquid crystals. After all, the typical size of a
nematic rod to be found in synthetic liquid crystals is a
few orders of magnitude smaller than the scale of the
fibers of interest in this work. Furthermore, via the
relation3 κn ∼ kBT/d, the appropriate length scale
implied by our value of κn ) 13kBT µm-1 is around d ∼
80 nm, which is consistently and reassuringly at least
of the same order of magnitude as the diameter of our
polymer rods. Interestingly, comparable values of κn to
that used in the work presented here have recently also
been found in the nematic phase of rodlike virus.18

5.2. Wormlike Micelles and fd Virus (Nematic
Solvent Dominated). Recently,18 fluorescence micros-
copy has been used to experimentally study the tangent-
tangent correlations of wormlike micelles immersed in
a nematic solvent of rodlike-shaped fd virus (see ref 18
for further details) at varying fd concentrations. There
it is found experimentally that in the nematic phase of
the fd virus the wormlike micelles adopt a highly
elongated, straight, rodlike conformation, whereas in

the isotropic phase of the fd virus the wormlike micelles
adopt a highly compact, random coillike conformation.18

To accurately model the experimental data of ref 18,
eq 12 becomes

Note the need to incorporate finite length effects into
in eq 23 via a low Fourier mode cutoff (π/L) in order to
accurately capture the experimental data. Note also the
factor of 1/2 that appears on the right-hand side of eq
23, which is required since we are only dealing in this
instance with the x component of perpendicular tangent
vector fluctuations. The proper accounting for this factor
in this work (as present in eq 23) corrects an error in
an analogous expression to be found in the work of ref
18.

Shown in Figure 5 are fits of our model (given by eq
23) to the experimental data of ref 18. The data points
are given for three different values of the concentration
of nematic fd virus (cfd). Note that the magnitude of the
correlation function decreases as cfd increases. In all the
model plots shown, we have taken L ) 50 µm, r ) 7
nm, and κt ) 0.5kBT µm.18,28 We have also taken Γ ) ∞
for all the model fits to the experimental data (corre-
sponding to perfect anchoring of the nematic at the
polymer surface). This provides us with a stringent test
of our model, in that the only remaining parameter now
available to us for fitting, is the nematic Frank constant,
κn, for the fd virus.

Shown in Table 2 are the best fit values for the Frank
nematic constant κn, for the three different concentra-
tions of nematic fd virus used in Figure 5 above.18 Note
that as the concentration of fd virus (cfd) increases, then
κn increases also, as one would expect intuitively.
Furthermore, the best fit values of κn given in Table 2

Table 1. Experimental Data for Average Hemoglobin
Fiber Midpoint Deviations (Taken from Refs 24 and 25)

〈x2(L/2)〉 (µm2) L (µm) r (nm)

fiber 1 0.0868 10 10
fiber 2 0.0002 1 10

Figure 5. Model best fits of 〈tx(s) tx(s′)〉 vs (s - s′) for wormlike
micelles in a nematic solvent of fd virus. The concentrations
of fd virus are given by cfd ) 39 mg/mL (open squares), cfd )
51 mg/mL (open triangles), and cfd ) 97 mg/mL (open circles).
(Experimental data points are taken from ref 18.)

Table 2. Model Best Fits for the Frank Constant Kn of a
Nematic Solvent of fd Virus, at Varying Concentrationsa

cfd (mg/mL) κn (kBT µm-1)

39 28
51 45
97 70

a We assume throughout that L ) 50 µm, r ) 7 nm, κt ) 0.5
kBT µm, and Γ ) ∞ (with experimental measurements taken from
refs 18 and 28).

〈tx(s) tx(s′)〉 ) 1
2∫π/L

∞ dp
π

cos(p(s - s′))〈t⊥(p)‚t⊥(-p)〉
(23)
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are consistent with previous measurements of the Frank
elasticity constants for fd virus samples prepared under
similar experimental conditions.29

6. Conclusions
We have studied theoretically a rodlike polymer

immersed in a nematic environment and described the
effect of a nematic solvent on small fluctuations of the
tangent vector perpendicular to the rod axis. We were
thus able to calculate the physically interesting proper-
ties associated with our combined polymer and nematic
system, including tangent-tangent correlation func-
tions, and the scattering structure factor, which repro-
duces qualitatively known experimental results well.19-23

The work presented here can be viewed as constitut-
ing a microscopic model derivation of other, more
phenomenologically inspired, theories13-18 that deal
with similar polymer/nematic systems. As one biologi-
cally important application of our model, we analyzed
the effects of a postulated nematic solvent on the
mechanical and elastic properties of individual hemo-
globin fibers.24-26 Under the physically reasonable as-
sumption of the presence of a fairly weak nematic
solvent, we are able to plausibly account for previously
observed discrepancies in the apparent rigidities of
hemoglobin fibers of varying lengths.24,25 As another
biological application, we modeled the effects of a strong
nematic environment of fd virus on the elastic and
conformational properties of wormlike micelles.18 In-
terestingly, both of the above applications seem to
suggest that we can successfully model the experimental
data by just considering the limit of perfect anchoring
of the nematic to the polymer surface (i.e., Γ f ∞). This
(rather appealingly) further suggests that for many
practical modeling purposes one can safely apply Oc-
cam’s razor to Γ (which is after all a somewhat ad hoc,
and presumably extremely difficult to measure, quan-
tity) and eliminate it as a free-fit parameter from our
theory, by setting it to be very large (i.e., infinity) from
the outset. Finally, we have shown in general that the
presence of a nematic environment can have important
and interesting effects on the conformational, elastic,
and mechanical properties of single polymer chains. In
light of this, the work presented here should also prove
to be similarly important for other long, slender, and
semiflexible biological macromolecules, such as TMV,
DNA, and proteins. The possibly interesting effects of
the presence of a nematic solvent on fiber self-assembly
and organization are left to future work.
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