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ABSTRACT: We use Brownian dynamics simulations and advanced
topological profiling methods to characterize the out-of-equilibrium
evolution of self-entanglement in linear polymers confined into
nanochannels and under periodic compression. By introducing
suitable observables, we can distinguish two main forms of
entanglement that we term geometrical and topological. The latter
is measured by the number of (essential) crossings of the physical
knot detected after a suitable bridging of the chain termini. The
former is instead measured as the average number of times a linear
chain appears to cross itself when viewed under all projections and is
irrespective of the physical knotted state. The key discovery of our
work is that these two forms of entanglement are uncoupled and
evolve with distinct dynamics. While geometrical entanglement is
typically in phase with the compression−elongation cycles and it is primarily sensitive to its force f, the topological measure is mildly
sensitive to cyclic modulation but strongly depends on both compression force f and duration k. The findings could assist the
interpretation of experiments using fluorescence molecular tracers to track physical knots in polymers. Furthermore, we identify
optimal regions in the experimentally controllable parameter space in which to obtain more/less topological and geometrical
entanglement; this may help designing polymers with targeted topology.

Although it is generally well established that self-
entanglements play vital roles in affecting polymer

dynamics, their time evolution under strongly nonequilibrium
conditions, such as those achieved via electric fields,
convergent flows, or mechanical compression1−5 are still
poorly understood. Under such conditions, polymeric
filaments cannot return to their equilibrium state until long
after the perturbation has ended. For instance, μm-long DNA
filaments can take seconds to relax after compression by
electric pulses3 or under confinement into narrow slits.6

Such unusually slow relaxations have been associated with
the emergence of complex forms of self-entanglement that
hinder conformational rearrangements of molecules and trap
them in long-lived states.2,7 This view is supported by the
observation of localized bright spots in fluorescence molecular
traces, which can be interpreted as physical knots, that is knots
in open chains.2,8−10

Several central questions remain unanswered. How exactly
does entanglement build up or decrease during nonequilibrium
dynamics? What is its inherent degree of variability and spatial
inhomogeneity? Is it feasible to control the out-of-equilibrium
driving so to produce polymers with a target level of
entanglement and heterogeneity?
In this computational study, we address these questions by

considering a semiflexible polymer and confining it in a
cylindrical channel where it undergoes compression and

expansion phases (see Figure 1A). The compression is driven
by a piston, a setup inspired by the “nanodozer” arrangement
of refs 1 and 11.
By using various topological measures adapted to the case of

linear chains,12 we systematically profile the nature and
complexity of self-entanglements that arise in such a system.
We show that entanglement created by cyclic compression
manifests in two different forms that we term geometrical and
topological after the order parameters used to distinguish
them. We measure the complexity of topological entanglement
in a linear chain, denoted by nc

topo, via the number of crossings
in the simplest (minimal) diagrammatic representation of the
knot trapped in the chain once its termini are suitably
bridged.13,14 The complexity of geometric entanglement,
denoted by nc

geom, is instead defined in terms of the self-
crossings in planar projections of the chain (without closure)
and is computed as the number of self-crossings averaged over
all projections.15
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We discover that these two forms of entanglement evolve
very differently: while the geometric one responds to
compression/relaxation cycles similarly to driven dissipative
systems, topological entanglement, reflecting the inherent
complexity of physical knots, is only mildly coupled to the
instantaneous driving or to the geometrical entanglements and
is long-lived. In fact, we show that significant physical knotting
sets in only at suitable choices of the compressive force and
period. The system can therefore be steered toward the
formation of more geometrical or topological entanglements
via the amplitude and period of the compressive force. Our
findings open new perspectives for characterizing entangle-
ment in fluctuating filaments and how to direct it by extrinsic
means.
We consider a general model of a semiflexible polymer

confined in a cylinder stopped at one end by a hard planar wall.
The polymer is periodically pushed against the wall by a
spherical piston that occludes the cylinder cross-section, see
Figure 1A. The chain is made of N = 1000 beads of size σ and
has a nominal persistence length of lp = 10σ. The cylinder has a
radius r = 40σ, with this being suitable to detect knotting.16,17

The system is evolved via Langevin dynamics simulations using
standard values for the mass and friction coefficient18 (see
Supporting Information (SI)).
In this initial study we only consider excluded volume

interactions of the polymer with itself and with the piston
(WCA repulsion) and the walls of the channel (quadratic
repulsion), neglecting hydrodynamic effects. Including these
would be computationally expensive and they are not expected
to alter the ensuing entanglement properties.19,20

We focus on the case where the piston is moved by a
periodic driving force parallel to the channel axis. The
amplitude of the force oscillates between the values 0 and f,

following a square wave with period 2k with each
compression/extension phase having duration k (which in
this work we express in units of 106 integration steps or 104 τLJ,
see SI). We typically start from an equilibrated polymer
conformation and drive the system for at least 100
compression/extension cycles in order to attain a steady
state (see Figure 1C,E).
We take advantage of the structural details available in our

simulations to profile entanglements through observables that
complement the metric elongation measures, such as the
gyration radius (see SI), that are accessible experimentally.2,3

We first measured the geometric entanglement for each
sampled conformation by averaging nc

geom at equal times over
different realizations of the noise (replicas). We shall denote
these averages as ⟨nc

geom⟩.
While f and k both affect significantly the distribution of

⟨nc
geom⟩ depends on the driving force f, but not on the cycle

time k (see Figure 1D,F). Instead, varying k affects solely the
width of the ⟨nc

geom⟩ distribution (see Figure 1F). More
specifically, we find that, for fixed force f, the distribution of
⟨nc

geom⟩ changes from unimodal to bimodal for long enough
cycle times k (Figure 1F). This effect that we shall rationalize
below, suggests the presence of characteristic time scales in the
system’s dynamics during which a driving force of a certain
amplitude must act in order to form entanglements.
That the mean average crossing number is independent of

the cycle time k can also be probed by averaging the ⟨nc
geom⟩

over the compression/relaxation cycles at steady state (we
consider the last 30 cycles). These data, shown in Figure 1G−
I, appear to saturate for large choices of k, while their average
over a period (compression and relaxation phases) remains
constant. Note that the curves are reminiscent of classic
dissipative systems, such as RC circuits or Kelvin−Voigt

Figure 1. (A) Sketch of the system set up. (B) One compression−extension cycle consists of two equal phases, both of duration k: the piston first
exerts compressive force f, followed by a zero force recovery phase. (C, E) The measure of geometrical complexity, nc

geom, is here averaged (as
denoted by brackets) at equal times across simulation replicas at fixed ( f,k). (D, F) Distribution of ⟨nc

geom⟩ at steady state. Note that the mean value
depends on f, but not k, whereas the variance depends on both. (G−I) ⟨ncgeom⟩ in the ON and OFF phases for f = 5kBT/σ and k = 0.1, 1, 10 × 104

τLJ. The average of nc
geom is here additionally taken over the period. Note that time is given in units of cycles, which varies across panels. ⟨nc

geom⟩ is
fitted with the expression d0(1 − exp(−t/τ)) + d1 for the ON phase and d0′ exp(−t/τ) + d1′ for the OFF phase with χ2 ≃ 1 for all fits in panels.
Unless otherwise specified k is given in units of 106 integration steps = 104 τLJ and f is given in units of kBT/σ.
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dashpot models. However, while in these classic systems the
relaxation time scale is intrinsic, that is, uncoupled from the
external driving, here the relaxation time scale does depend on
the driving and, particularly, on k. This suggests the existence
of a complex and possibly multiscale relaxation kinetics
underlying the evolution of geometrical entanglement. We
aim to explore this interesting aspect in future work.
The results in Figure 1 indicate that two tunable parameters,

f and k, allow for separate control of the mean and variance of
the geometric entanglement at steady state (see SI for further
details).
To characterize the entanglement beyond its geometrical

manifestation, as captured by ⟨nc
geom⟩, we tracked the formation

of physical knots using the kymoknot software package.14 This
uses a minimally invasive procedure to close an open chain12

by joining the termini either directly or through the convex
hull of the chain, depending on which of the two provides the
shortest route (see SI for more detail). The procedure allows
us to assign a topological state (knot) to an open chain, locate
the knotted portion along the chain contour and measure its
complexity via its minimal crossing number.
Typical time evolutions of the knotted portion are presented

in the kymographs of Figure 2. Different colors are used to
distinguish the various knot types that form, evolve, and untie
during the compression−expansion cycles. The colored region
indicates the physical location of the knot on the chain
contour. The temporal traces of the associated ⟨nc

geom⟩ are also
shown. The “ON” phase of the periodic compression (force)
are marked by gray shading.
Physical knots clearly follow a rather different evolution

from ⟨nc
geom⟩. After the initial transient (Figure 2A), the ⟨nc

geom⟩
varies continuously and in register with compression and
expansion phases (Figure 2E), retracing stochastically the
loading and unloading curves of Figure 1C,D. Instead, over the
same time scales, both the type and the location of physical
knots vary discontinuously and can persist across cycles. In
fact, physical knots appear, disappear, or change in complexity
during both the compression and the expansion phases.
The kymograph of Figure 2A gives a striking illustration of

the persistence of physical knots, specifically a 41 knot that
forms during the initial compression cycles and onto which
additional transient entanglement is repeatedly introduced
from either or both ends. We surmise that these types of long-
lived knots are those observed in experiments using fluorescent
microscopy, particularly the ones whose essential crossings
coalesce in a tangle tight enough to create a bright fluorescence
spot. Note that the tightness of the tangle does not necessarily
correlate with the localization of the overall knotted
region.21,22 The trajectories of Figure 2 clarify that the whole
knotted region is, in fact, delocalized, as it spans a significant
portion of the chain.
Inspection of the boundaries of the knotted region reveals

that the most common knot tying/untying mechanisms occurs
at one, or both, chain ends, hence, involving either the
threading/unthreading of loops by the chain ends or
“backfolding” (Figure 2F). In contrast, we rarely observe
“slip-knotting”, which occurs when a loop is threaded by a
backfolded end. These events would manifest as a sudden
appearance or disappearance of entanglement inside the chain,
that is, away from the chain ends.16,23−25 The overall behavior
is consistent with previously reported results for the
spontaneous knotting of free chains in equilibrium.26

To quantify the external control on the geometrical and
topological entanglement, we profiled the dependence of the
median values of nc

geom and nc
topo on f and k (see SI for details).

nc
topo is the so-called crossing number and is a conventional
measure of knot complexity. It corresponds to the number of
essential crossings (a diagrammatic crossing is essential if its
flipping would change the knot type) or, equivalently, to the
number of crossings in the minimal diagrammatic representa-
tion of a given knot. To establish it, we simplified the crossing
pattern of a (closed) chain configuration first geometrically,
using topology-preserving Monte Carlo moves27,28 and then
symbolically via reductions and factorizations of the resulting
Dowker code.29 The latter was finally compared against a
lookup table of knots with up to 16 crossings.29 The procedure
allowed for establishing the precise knotted state and hence
nc
topo of most of the sampled conformations, and used the
lowest number of crossings after simplifications for the rest.
These highly complex configurations were a minority of those
sampled at any ( f,k) and therefore do not significantly bias the

Figure 2. (A, E) Kymographs for two time windows within the
simulations with f = 1 and k = 1 showing the formation and evolution
of knots. Knots are highly dynamic and appear/disappear, even within
a single compression/extension phase. Long-lived knots are less
frequent. Note that most of the knots are shallow and spanning a large
portion of the polymer (delocalized). The boundaries and topology of
the knots are determined as median over a time-window of 11 time
points equispaced by Δt = 103 τLJ. The traces of nc

geom for this replica
(blue) and the average over replicas (red) are shown at the top of the
kymographs. (B−D) Three snapshots of two time points indicated
with the gray (B) and black (C, D) arrow wedges. (F) Cartoons of
knotting by threading (left) and slipknotting (right).
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median nc
topo at any ( f,k) combination. The results are shown in

Figure 3.
Here we see that the median nc

topo depends on both f and
fixed k. Instead, and consistent with the results of Figure 1C,D,
the median nc

geom depends on f, but only weakly, if at all, on k.
This is summarized in Figure 4A. The state diagram shows a
tripartite division of parameter space in which different
combinations of geometrical and topological entanglement
can be achieved by tuning f and k.
Our topological profiling strategy allows for pinpointing

which types of physical knots are preferentially formed at the
different values of f and k. It also provides a useful term of
reference for future experiments aiming at studying polymers
with a given topological entanglement. In fact, at small forces,
an increase of the cycle time k leads to an an increase of the
simplest types of knots, particularly trefoil knots. However, at
large forces, the population of trefoil knots decreases with k.
The abundance of composite knots is also enhanced at larger
forces, even for small periods while no composites are
observed at small force (Figure 4B). Both aspects are
reminiscent of knot populations in equilibrated chains or
rings, which vary nonmonotonically with increasing
length,26,30−33 with the force playing an analogous role as
ring length; at the same time, the cycle time k is a significant
control parameter that has no analogue in equilibrated systems.
It is particularly interesting that most of the knots generated

at f = 1 and k = {0.01, 0.1} have an unknotting number equal

to 1, see Figure 4C, meaning that they can be untied by a
single suitable strand crossing. At the same time, the balance of
twist and torus knots, shown in Figure 4D, shows a slight
dominance of torus knots, contrary to what has been observed
in unconstrained equilibrated rings.
Innovative single-molecule techniques have made it possible

to explore the out-of-equilibrium behavior of polymers by
monitoring the fluorescence signals and, particularly, the
appearance of bright fluorescence spots, a likely signature of
localized entanglement.1,5 At the same time, key aspects of the
out-of-equilibrium entanglement kinetics remains beyond the
reach of such techniques and, hence, are still limitedly
understood. For instance, genuine physical knots and other
type of entanglement can both generate fluorescence spots.34

Additionally, the incidence of delocalized physical knots is not
reliably known, as they would be challenging to detect from
fluorescence signals. Accordingly, we still have an incomplete
knowledge of the entanglement that inevitably forms in
polymers driven out of equilibrium and how its evolution
affects a polymer’s behavior.
To clarify these questions we modeled a so-called “nano-

dozer” assay where a semiflexible chain is subject to cyclic
compressionsinside a cylinder. For this prototypic system, we
precisely monitored the formation and evolution of both
geometrical and topological entanglement, the latter identified
through the algorithmic detection of physical knots, regardless
of how “tight” they were.12

We discover that these two types of entanglements
(geometrical and topological) are broadly independent and
evolving with different dynamics. For instance, the former
follows closely the compression driving (Figure 1), whereas the
latter does not (Figure 2). We also observe that the interplay
between the driving force and its period gives rise to a rich
phenomenology; for instance, we clearly identify three regions
in the parameter space with different levels of geometrical and
topological (median) entanglement and also heterogeneity
(Figures 3 and 4). Importantly, we find that in some regions of
the parameter space, these two aspects are decoupled and can
therefore be independently tuned to generate of polymer states
with desired combinations of geometrical and topological
entanglement.
Our discoveries ought to be useful both in interpreting

experimental results on out-of-equilibrium polymer entangle-

Figure 3. (A, B) Median nc
geom and median nc

topo, respectively,
observed at steady state for various combinations of f and k. These
plots were obtained as linear interpolation of values obtained for f = 1,
5, 10, and 20 and k = 0.01, 0.1, 1, and 10. The black lines are the
contours for median equal 120 (case A) and 6.7 (case B).

Figure 4. (A) Sketch of the state diagram identifying regions of the ( f,k) parameter space yielding different combinations of geometric and
topological entanglement at steady state, see Figure3. Region I: Low geometrical and topological entanglement. Region II: High geometrical and
low topological entanglement. Region III: high geometrical and topological entanglement. (B) Knot spectrum for different combinations ( f,k). The
group “others” contains nontrivial knots that, after topology-preserving simplifications, could not be assigned to the labeled groups. (C) Unknotting
number and (D) abundance of twist and torus knots. In (C) and (D), we restricted (and normalized) the counting to prime knots with crossing
number less or equal than 9 for simplicity. In (D), the trefoil knot contributes to both twist and torus families.
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ment and in designing new techniques to generate linear
polymers with specific entanglement properties. Finally, the
fact that many of the physical knots observed in our
simulations are delocalized (i.e., not tight, see Figure 2) raises
questions about whether these states can be faithfully detected
in today’s experimental assays or whether new experimental
approaches are needed.
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