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Compositional heterogeneities of cell membranes are thought to play an important role in many

physiological processes. We study how variations in the membrane composition can be driven by

nonthermal fluctuating forces and therefore show how these can occur relatively far from any critical

point for the membrane. We show that the membrane steady state is not only controlled by the strength of

the forces and how they couple to the membrane, but also by their dynamics: In a simple class of models

this is captured by a single force correlation time. We conclude that the coupling of membrane

composition to normal mechanical forces, such as might be exerted by polymerizing cytoskeleton

filaments, could play an important role in controlling the steady state of a cell membrane that exhibits

transient lateral modulations of its composition on length scales in the 10–100 nm regime.
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Biological membranes are composed of a large variety of
lipids and proteins. Spatiotemporal variations of membrane
composition play an important role for many cellular func-
tions, including cell signaling, endocytosis, and cellular traf-
ficking [1,2], and are likely to be tightly regulated. The lateral
organization of biomembranes has, in particular, been linked
to the structure of the cell cytoskeleton [3–5]. It is becoming
increasingly clear that the control of biomembrane organi-
zation involves the stochastic dynamics of its environment,
which influences the membrane through biochemical signal-
ing, mechanical perturbation, and direct material fluxes.
Recently we showed how recycling of membrane compo-
nents can sensitively tune the state of themembrane [6].Here
we show how membrane organization depends on the
temporal correlations of its fluctuating environment.We first
calculate the membrane’s response to a locally correlated
stochastic coupling of arbitrary origin. We then analyze in
detail the case inwhichmembrane composition is coupled to
the local membrane curvature, itself driven by random
mechanical forces generated by the cytoskeleton. This
nonequilibrium regulatory mechanismmakes it unnecessary
to invoke critical fluctuations, and hence a fine-tuning of
membrane composition, to explain membrane heterogeneity
on the observed length scales.

Biological membranes can be studied in vivo via dy-
namical tracking of tagged membrane components [3].
Recently, small (� 75 nm), short-lived (� 250 msec)
domains have been observed near well-defined membrane
locations [7,8]. Such behavior appears to result from spa-
tially localized stochastic forces of biochemical or physical
origin that act to drive changes in membrane composition.

Model for membrane phase separation.—We start with
the membrane Hamiltonian [9]:

H ¼ 1

2

Z
d2r½b�2 þ�ðr�Þ2 þ �ðr2uÞ2 þ �ðruÞ2

� 2�C0
o�r2u� 2��� 2fu; (1)

written in terms of the membrane composition field �ðrÞ
and normal membrane displacement uðrÞ, both assumed to
represent small perturbations around a perfectly mixed
(� ¼ 0) and flat (u ¼ 0) membrane. Equation (1) can
either be motivated on symmetry grounds or by tracing
the physical interpretation of the various terms. These
include local mixing interaction and concentration gradient
terms for the membrane composition (parameters b and
�), the membrane tension � and bending rigidity �, and a
coupling term C0

o capturing how the local membrane spon-
taneous curvature depends on the composition to lowest
(linear) order in �. Thus, when the latter term is consid-
ered, � is the density of membrane component(s) that
couple to curvature. The fields f and � are external
(cellular) forces conjugate to u and �, respectively.
In Fourier space [with xq ¼ R

d2reiq�rxðrÞ and x�q ¼
x�q], H ¼ R d2q

2ð2�Þ2 H q with

H q ¼ hqj�qj2 þ kqjuqj2 � 2�quq�
�
q � 2�q�

�
q � 2fqu

�
q;

hq ¼ bþ�q2; kq ¼ �q2 þ �q4; �q ¼ �C0
oq

2:

(2)

The kinetic evolution of the fields u and �, coupled to
the local fluctuating forces fðtÞ and �ðtÞ, is given by [10]

_�q þ�q2ðhq�q � �quqÞ ¼ �q2�q;

�q _uq þ ðkquq � �q�qÞ ¼ fq;
(3)

where� is related to the diffusion coefficient of membrane
components by D ¼ �hq [Do ¼ Dðq ! 0Þ], and � is the

solvent viscosity dampening membrane displacement [11].
The susceptibilities of the membrane deformation kq and

composition hq involve characteristic length scales. The

former 	 � ffiffiffiffiffiffiffiffiffiffi
�=�

p
(� 100 nm for � ¼ 20kBT and

� ¼ 10�5 J=m2) is quite relevant to the present study,

while the latter
ffiffiffiffiffiffiffiffiffiffi
�=b

p
is of molecular dimension far from
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the critical point for membrane composition [10], and will
be neglected (� ’ 0) when discussing specific examples
below. Note that the q-space functions coupling the differ-
ent fields in Eqs. (2) and (3) can readily be generalized to
include additional contributions to the elastic and dynami-
cal responses of both deformation and composition.

We study the membrane’s response to correlated fluctu-
ating forces (of zero mean), to which end we adopt

h�qðtÞi ¼ 0; h�qðtÞ��qðtþ 
tÞi ¼ ��2qe
�j
tj=��;

hfqðtÞi ¼ 0; hfqðtÞf�qðtþ 
tÞi ¼ �f2qe
�j
tj=�:

(4)

For multiple localized forces we can write fðr; tÞ ¼P
ifiðtÞ
ðr� riÞ, with fi the force due to the ith cytoske-

letal anchor (located in ri), similarly for � representing
localized arbitrary biochemical coupling(s). Thus,

fq ¼ P
ie

iq�rifiðtÞ with hfiðtÞi ¼ 0 and hfiðtÞfjðtþ 
tÞi ¼
�f2
ije

�
t=� (with �f a constant). In what follows we con-

centrate on a single force center situated at r ¼ 0 noting
that the membrane response is linear and so membrane
deformation caused by additional force center(s) would
simply add independently. For a numerical solution of
the microphase separation induced by multiple force cen-
ters, see supporting movies 1–4 [12], while the level of
interactions between these force centers is shown in Fig. 1.

Fluctuations of membrane composition.—We first study
the fluctuations of membrane composition subjected to a
correlated fluctuating force �ðtÞ of arbitrary origin, without
coupling to the membrane shape (�q ¼ 0). The solution

of Eq. (3) subjected to Eq. (4) is calculated in the supple-
mentary information (SI) [12]:

hj�qj2i ¼
��2q

h2q

Dq2��

Dq2�� þ 1
: (5)

This expression gives the appropriate static response
(�q ¼ �q=hq) in the limit Dq2� � 1, and satisfies equi-

partition of energy, hj�qj2i ¼ kBT=hq, in the limit of tem-

porally uncorrelated forces (�� ! 0) if the fluctuating

force �ðtÞ satisfies the fluctuation-dissipation theorem,
hj�qj2i ¼ ��2q ¼ kBT=ð�q2��Þ. Equation (5) shows that

modes satisfying Dq2�� � 1 are essentially unaffected,

while modes such that Dq2�� � 1 are strongly sup-

pressed, by the fluctuating nature of the correlated force.
Membrane-cytoskeleton coupling.—The cytoskeleton

underlying the plasma membrane has long been thought
to influence the mobility and clustering of membrane
proteins by hindering their lateral motion [13]. The mem-
brane composition is also known to be sensitive to the local
membrane curvature [14], which should fluctuate strongly
under the action of mechanical forces produced by (de)
polymerizing cytoskeleton filaments, and molecular mo-
tors. Many membrane proteins and lipids possess a sponta-
neous curvature and tend to colocalize with membrane
regions of particular curvature [15]. At the linear level,
one may write the composition-dependent spontaneous

curvature C0 ¼ C0
0�, as was done in Eq. (1). One can in

principle solve Eq. (3) for the two coupled fields of mem-
brane composition and deformation [10]. For the sake of
clarity here we only investigate the limit of rather weak

coupling (�q � �C0
oq

2 <
ffiffiffiffiffiffiffiffiffiffi
kqhq

p
), so that the membrane

deformation is substantially determined by the external
force, with little feedback from the membrane composi-
tion. In the opposite limit of strong coupling, a curvature
instability can arise where large membrane undulations
coupled to strong composition variation grow spontane-
ously [9]. Curvature-induced sorting of membrane compo-
nents can also occur when the membrane rigidity �
depends on its composition [16,17]. This situation cannot
be addressed at the linear level of description chosen here,
but can be expected to yield qualitatively similar behavior.
The mean squared deformation solution of Eq. (3) under

a fluctuating force f satisfying Eq. (4) is (see SI [12]) [18]:

huqðtÞuqðtþ
tÞi¼
�f2

k2q

ð�q�Þ2
ð�q�Þ2�1

�
e�
t=��e��q
t

�q�

�
; (6)

where�q ¼ kq=ð�qÞ is the relaxation rate of themembrane

deformation [19]. As a result of its coupling to the local
curvature, the membrane composition sees a fluctuating
force following fluctuations of the membrane shape, with
correlation h� 0qðtÞ� 0qðtþ 
tÞi ¼ �2

qhuqðtÞuqðtþ 
tÞi.
The composition correlation function now involves three

relaxation rates: of the force correlation 1=�, of the mem-
brane deformation �q, and of the membrane composition

Dq2. In the regime of most interest to us the membrane

Interacting dom
ains

Noninteracting dom
ains

FIG. 1 (color online). The dynamics of a membrane containing
multiple force centers (of density ) depends on the ratio of the
membrane length 	 (see text) to the distance between force
centers, 	

ffiffiffiffi


p
, and the ratio of the composition diffusion lengthffiffiffiffiffiffiffi

D�
p

to the distance between force centers
ffiffiffiffiffiffiffiffiffiffi
D�

p
. Each illus-

tration represents two neighboring force centers, with a typical
separation �1=2, and shows (not to scale) the diffusion length in
red (thin), the membrane length in blue (thick), and the region of
substantial compositional variation in dark gray shading. The
controlling length scale is shown as a continuous colored line
and the other length scale is shown dotted. The shaded region
indicates where domains are substantially noninteracting.
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shape adjusts much faster than the membrane composition

�q � Dq2, since the membrane length 	 (¼ ffiffiffiffiffiffiffiffiffiffi
�=�

p �
100 nm) is much smaller than �=ðD�Þð�10 �mÞ. The
membrane deformation can therefore be considered to
relax instantaneously on the time scale of composition
changes. The correlation functions then reads:

hj�qj2i ¼ ð	2C0
oÞ2 �f2

h2q½1þ ð	qÞ2�2
Dq2�

ðDq2�þ 1Þ ; (7)

akin to Eq. (5) but with an effective driving force that
includes the membrane elasticity and the strength C0

0 of

the composition coupling to curvature but which is insen-
sitive to the deformation dynamics �q.

Quantification of membrane organization.—We first
examine the extent to which a static perturbation, to be
specific a mechanical force �f generating membrane curva-
ture, induces the reorganization of (curvature-sensitive)
membrane components. The inverse Fourier transform of
Eq. (7) in the limit � ! 1 (and � ¼ 0) reveals a spatial
composition modulation around a static point force of the
form �j�!1 ¼ �0K0ðr=	Þ, with �0 ¼ �fC0

0=b. The modi-

fied Bessel function of the second kind K0, characteristics
of membrane deformation [20], decays exponentially be-
yond a distance 	 from the force [21] [see Fig. 2(b)].
Assuming the second virial coefficient b to be of thermal
origin, b� kBT=s, where s is a molecular area (e.g., the
area of curvature-sensitive proteins), strong enrichment
near the force (�0 ’ 1) is expected for s > kBT= �fC

0
0, of

order ð2 nmÞ2 with f ¼ 5 pN [18] and 1=C0
0 ¼ 5 nm [22].

Sorting of lipid alone [s� ð0:7 nmÞ2] typically requires
proximity to a critical point (b ! 0) [16,22], but mem-
brane proteins are often larger than the critical area and

their spatial distribution can be strongly sensitive to a
membrane curvature generated by an external force [15].
The full spatiotemporal correlation function for the

membrane composition (see SI [12]) can yield any statis-
tical information of the membrane composition by inverse
Fourier transform to real space [Fig. 2(b)]. This step typi-
cally involves numerical calculation, but an analytic statis-
tical measure for the membrane state can be obtained by
integrating the autocorrelation function:

C ð��Þ ¼
R
d2rhj�ðrÞj2ij��R

d2rhj�ðrÞj2ij��!1

¼
R
d2qð ��2=h2qÞ½D��q

2=ðD��q
2 þ 1Þ�R

d2q ��2=h2q
; (8)

here normalized by the membrane’s response to a perma-
nent perturbation discussed above [Cð�� ! 1Þ ¼ 1] to

reveal the role of the fluctuating nature of the force.
Equation (8) can readily be used to quantify the

membrane composition’s response to fluctuations of
the local curvature under stochastic mechanical forces
[using Eq. (7)]:

C curv ¼ ��ð ��� log ��� 1Þ
ð ��� 1Þ2 ; (9)

with ���D�=	2. This result can be compared to
the response of other types of fluctuating enviro-
nments, such as an exponentially decreasing local source

of signaling molecules ��q ¼ 1=½1þ ð	qÞ2�3=2, Cexp¼
��ð ��2�2 �� log ���1Þ=ð ���1Þ3, or a similar force of

Gaussian form, ��q¼e�ð	qÞ2=2. These response functions

are shown in Fig. 2(a). All three show a slow convergence
toward the static response (C ! 1 for ��!1), but exhibit
distinct behaviors for weakly correlated excitations:
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FIG. 2 (color online). (a) Comparison of the membrane dynamical response [as defined by Eq. (8)] to a fluctuating environment of
typical correlation time � that drives the membrane composition changes via (i) localized exponentially decreasing forces (Cexp),
(ii) localized forces with Gaussian spatial distribution (CGauss), and (iii) a local coupling between membrane composition and
membrane curvature, itself excited by localized normal mechanical forces (Ccurv). The inset shows the different behaviors of the
response functions for weak correlations: � ! 0. (b) Local correlation function h�ðrÞ2i driven by a fluctuating random force at r ¼ 0
with a correlation time � (shown for D� ¼ 0:01; 0:1; 1; 10). Top shows the case of a local mechanical driving force with coupling
between membrane composition and curvature, bottom shows the case of a force decaying exponentially from a local source. The
results for permanent forces (� ! 1) are shown dashed. (c) Amplitude at the origin (h�ð0Þ2i—black curve) and distance from the
origin where the amplitude has dropped by half (r1=2—gray curve) as a function of the correlation time �, shown for an exponential

perturbation, which is well behaved as r ! 0 [21]. The global measure C (dashed gray curve) is numerically shown to follow the
expected scaling behavior C ¼ h�ð0Þ2ir21=2 (dots).
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C curv !
��!0

�� log
1

��
; Cexp � CGauss !

��!0
�� : (10)

The membrane’s deformation around a localized mechani-
cal force contains a high density of short wavelength
modes to which its composition adjusts quickly. Ccurv is
thus highly sensitive to short-time correlations of the
stochastic environment. Note that Eqs. (9) and (10), are
valid provided � > a2=D, a weak constraint since the
short-distance cutoff a is of molecular size.

Two important measures of the fluctuating membrane
domains are the intensity of phase segregation within them
and their average size. Both properties depend on the
correlation time �, and are somehow mixed in the global
measure C of Eq. (8). As shown in Fig. 2(b), the real-space
correlation function h�ðr; tÞ2i can be obtained from the
(numerical) inverse Fourier transform of h�qðtÞ�q0 ðtÞi (see
SI [12]). These plots show that while the characteristic
shape of the domain resembles the permanent shape even
for short correlation time � (of order �	2=D), its compo-
sition requires longer times to reach its static level. This
behavior is further illustrated in Fig. 2(c), where both the
maximal level of correlation (hj�ðaÞj2i) and the typical
distance r1=2 from the source at which the mean squared

amplitude falls by half (hj�ðr1=2Þj2i ¼ hj�ðaÞj2i=2) are

plotted as a function of the correlation time. Remarkably,
the global measure of the perturbation C closely follows
the expected scaling result C� h�ðaÞ2ir21=2 for all times,

thereby validating C as a good quantity with which to
measure the membrane’s response to a fluctuating
environment.

Conclusion.—The processes that control the lateral or-
ganization of biological membranes are still elusive. Much
effort has been put into understanding the equilibrium
phase behavior of these membranes as part of a philosophy
that sees them as quasiequilibrium structures. We believe
that active fluctuations in the membrane’s environment
play a crucial role in controlling the membrane lateral
heterogeneities. Our model shows the central importance
of the temporal correlation of a noisy environment in
triggering the membrane response; see Fig. 1.

Figure 2 shows how the membrane’s lateral organization
varies with the correlation time of the perturbation. While
the spatial extent of the membrane reorganization ap-
proaches the extent of the driving force even in a highly
fluctuating environment ( �� < 1), the amplitude of the
perturbation must be driven much more slowly ( �� � 1)
if it is to reach its full potential. For typical values of the
parameters, 	 ¼ 100 nm and D ¼ 0:1 �m2=s, we find a
typical diffusion time scale of order 100 msec, similar to
the correlation time of membrane heterogeneities reported
in [7]. This means that one can expect ��� 1 in this
particular case, and that the present model can be very
relevant to lateral heterogeneities of cellular membranes
[7]. Dynamical maps of the cell membrane’s composition
[8] bear clear resemblance to the one produced by our
model (in particular movie 4 in the SI [12]). A primary

result of this work is that compositional changes due to
variations in membrane curvature driven by normal forces
exerted by the cytoskeleton could represent the dominant
cellular strategy for membrane organization. This proposal
may be tested by monitoring the spatiotemporal dynamics
of the membrane composition in conditions when the
dynamics of cytoskeletal filaments has been modified,
e.g., by specific drugs.
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