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ABSTRACT We study a physical model for the formation of bud-like invaginations on fluid lipid membranes under tension, and
apply this model to caveolae formation. We demonstrate that budding can be driven by membrane-bound proteins, provided
that they exert asymmetric forces on the membrane that give rise to bending moments. In particular, caveolae formation does
not necessarily require forces to be applied by the cytoskeleton. Our theoretical model is able to explain several features
observed experimentally in caveolae, where proteins in the caveolin family are known to play a crucial role in the formation of
caveolae buds. These include 1), the formation of caveolae buds with sizes in the 100-nm range and 2), that certain N- and
C-termini deletion mutants result in vesicles that are an order-of-magnitude larger. Finally, we discuss the possible origin of
the morphological striations that are observed on the surfaces of the caveolae.

INTRODUCTION

It has long been understood that invaginations form

spontaneously on cell membranes (Alberts et al., 1994).

These invaginations, which eventually separate from the

membrane as mature, membrane-bound vesicles, play an

essential role in cellular trafficking and signaling (Stahlhut

et al., 2000; Lisanti et al., 1994). The mechanism by which

such invagination is controlled is still far from fully un-

derstood, although it is now widely accepted that certain

membrane-bound proteins, including clathrin and caveolin,

play an important role. The formation of clathrin-coated pits

is thought to be driven by the controlled geometric

aggregation of clathrin into rigid scaffolding, which forces

the membrane to curve (Takei and Haucke, 2001; Mashl and

Bruinsma, 1998). The mechanism for formation of the

second most common class of membrane invaginations,

known as caveolae, is less well understood. Caveolae, which

are less morphologically distinct than clathrin-coated pits,

resembleV-shaped invaginations with a typical size of;100

nm (Rothberg et al., 1992; Schlegel et al., 1998; Westermann

et al., 1999). They are present at high concentrations on

primary adipocytes, fibroblasts, muscle cells, and pulmonary

type 1 cells as well as endothelial cells, and perform a variety

of functions ranging from signal transduction to intracellular

transport (Gilbert et al., 1999; Schlegel and Lisanti, 2001). A

‘‘striated coat’’ can be seen on the cytoplasmic side of the

caveolae membrane. It is believed to reflect the organization

of a recently discovered class of membrane-bound proteins,

called caveolins, which are crucial to the formation of

caveolae (Lisanti et al., 1994).

The protein caveolin has a hairpin structure, with a short

membrane-spanning sequence, flanked by two hydrophilic

termini, both found on the cytoplasmic side of the cell

membrane: a 101-amino-acid polypeptide N-terminus tail

(polymer), and a shorter (44 a-a) C-terminal, which is strongly

attached to the membrane (Schlegel and Lisanti, 2001). These

caveolin molecules are typically found in small aggregates of

15–17 molecules (Schlegel et al., 1998; Sargiacomo et al.,

1995), the aggregation being driven by residues of the

N-terminal located close to the membrane. Furthermore, it

is believed (Schlegel and Lisanti, 2001) that there exist

some specific C-terminal to C-terminal attractions, which are

responsible for the organization of the protein aggregates at

the surface of the caveolae membrane. Mutational analysis of

caveolin-induced vesicle formation have been recently

performed (Li et al., 1998) and is discussed in relation with

our theory in the Conclusions section.

Caveolae are now thought to influence cell physiology in

manyways, including growth and cell division, adhesion, and

hormonal response (Fielding and Fielding, 2000). These

invaginations have been associatedwith the formation of lipid

rafts (Kurzchalia and Parton, 1999)—glycosphingolipid- and

cholesterol-enriched microdomains within the plasma mem-

brane of eukaryotic cells. Their ability to perform many

different tasks might be achieved by their involvement in

reporting change in membrane composition by signal trans-

duction to the nucleus. It may also be connected to their

regulation of signal traffic in response to extracellular stimuli,

including mechanical stress (Park et al., 2000).

From a physical point of view, spontaneous vesicle

formation has been observed in vitro by adding amphiphilic

polymers to various lipid systems (Lasic et al., 2001). It can be

viewed as an example of the so-called curvature instability of

fluid membranes containing inclusions, predicted to occur for

inclusions that locally influence the membrane curvature

(Leibler, 1986; Leibler and Andelman, 1987). There have

been physical studies of the inclusion-induced budding of

vesicles (Kim and Sung, 1999; Seifert, 1993; Jülicher and
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Lipowsky, 1996) andworks on the effect of single (Lipowsky,

1997; Hiergeist et al., 1996) and distributed (Nicolas, 2002)

polymers grafted on membranes.

Many theoretical studies have also been devoted to

understanding physical coupling between integral membrane

proteins and biological membranes. Such couplings include

local disruption of the bilayer molecular structure in the

vicinity of the protein (hydrophobic mismatch, local mem-

brane tilt), and the behavior of foreign bodies in a fluctuating

environment (for reviews, see Goulian, 1996 and Mouritsen

and Andersen, 1998).

Our aim is to study the effect of small inclusions, such as

proteins, that affect the shape of the cell membrane. We

assume that this ‘‘foreign’’ object exerts a force on the

membrane, which may be due either to entropic effects,

similar in origin to the pressure exerted by a gas onto the

walls of its container, or to specific mechanochemical forces.

Throughout we will attempt to compare our rather general

theory with the specific phenomenon of caveolin-mediated

formation of caveolae. The fact that membrane-bound

objects exert a force on the membrane arises naturally from

theories that describe polymers grafted to surfaces. These

have been extensively developed over the last decade or

so, based on early ideas due to de Gennes (1991) and others.

The forces exerted by membrane-bound inclusions, as well

as their interactions, have been calculated in certain ideal

situations (e.g., idealized polymers on a tensionless mem-

brane; Bickel et al., 2001; Breidenich et al., 2000). In what

follows, we will analyzed arbitrary force distributions, which

allow for the description of specific inclusions, such as the

caveolin aggregates. We also focus on tension-bearing

membranes, a situation that we believe more closely ap-

proximates the plasma membrane of the cell.

Our physical description of caveolae formation in cell

membranes involves the segregation of the caveolin proteins

into strongly curved membrane patches. This segregation is

driven by the protein’s predilection for a curved surface—

itself a consequence of the forces it exerts on the membrane.

Our model is based on the mechanical response of fluid

membranes to local forces applied by membrane-bound

proteins (Membrane Response to an Arbitrary Force

Distribution, below). The force distribution which can result

from the particular structure of oligomers of the membrane

protein caveolin is discussed in Models for Membrane-

Bound Proteins. Physical theories for the several levels of

protein self-organization at the cell membrane (the formation

of the protein oligomers, and the formation of membrane

invagination) are presented in Bud Structure and Morphol-

ogy, followed by Results for Various Force Distributions.

We then briefly comment on possible physical mechanisms

for the peculiar protein arrangement (stripe formation) at the

bud surface (Microphase Separation at the Bud Surface). The

Conclusions section discusses topics such as the possible

function of caveolae as membrane mechanosensors, the

influence of the membrane composition, and the effect of

mutation of the protein caveolin. The main mathematical

symbols used in this text are listed in Table 1.

MEMBRANE RESPONSE TO AN ARBITRARY
FORCE DISTRIBUTION

The deformation energy of a membrane involves its surface

tension g and bending rigidity k. Cells commonly adjust

their surface tension to a set value via a mechanism known as

surface-area-regulation (Morris and Homann, 2001). Hence

membrane phenomena over sufficiently long timescales

effectively occur at constant surface tension. It is also known

that the composition of biological membranes exhibits

spatial variations. Caveolar membranes, for instance, show

a high cholesterol content (Fielding and Fielding, 2000), the

precise biochemical role of which is not yet entirely clear.

From a physical point of view, it is known that cholesterol

increases the local rigidity of the membrane (Evans and

Rawicz, 1990; Song and Waugh, 1993). Local variations of

membrane rigidity are not included in the following model,

but some (limited) information on the impact of cholesterol

on caveolae at the physical level can be obtained by ex-

amining the effect on uniform changes in k across the whole

membrane. It has also being suggested that the chiral nature

of cholesterol may play a role in the process of bud formation

(Sarasij and Rao, 2002).

Initially, we restrict our analysis to a membrane that

is weakly deformed by the presence of the inclusions. We

proceed by writing down the free energy of an infinite planar

fluid membrane as a standard expansion in powers and

gradients of the membrane displacement u(r) from its flat

TABLE 1 Table of symbols used in the text

Symbol

Denomination

(and Dimensions)

Numerical

value

Membrane

k Bending modulus (energy) 20 kBT

g Surface tension (energy/area) 10�4 N/m

k�1 [
ffiffiffiffiffiffiffiffi
k=g

p
Decay length 30 nm

Proteins

E0 Energy scale for applied force 10 kBT

a, b Size of the oligomer core

and corona

2 nm, 5 nm

s1 ¼ pb2 Oligomer surface area 75 nm2

Drr Force distribution second

moment (energy 3 length)

100 kBT 3 nm

V(r) Oligomers interaction potential

(energy)

see text

B2 Oligomers second virial

coefficient (area)

’ 6s1

Buds

Ep,b,ep,b Aggregate total and per particle

energies

m, f Oligomer chemical potential

and surface fraction

Rmin ¼ 4ks1/Drr Radius of a closed packed bud

(f ¼ 1)

60 nm
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(unperturbed) position (Safran, 1994). This is modified to

include the leading order term arising from the coupling to

u of the applied pressure distribution f(r), which will arise

from the action of inclusion(s). (No net force acts on the

membrane, inasmuch as no net force can be exerted by an

object that is not externally attached—i.e., to the cytoskel-

eton. For more details see Evans et al., 2003.) More details

on the mathematical analysis involved in the derivation of

Eqs. 2 and 4, below, can be found in Evans et al. (2003).

F ¼
ð
d
2r9

k

2
ð=2

uÞ2 1 g

2
ð=uÞ2 � fu

h i
: (1)

Typically values for phospholipid bilayers are k � 20 kBT
(Evans and Rawicz, 1990). (It is usually helpful to compare

energies to the energy available from thermal fluctuations

kBT, where kB is the Boltzmann constant and T the tem-

perature.) The surface tension is reported to be in the range

g � 10�2�10�1 pN/nm (Sheetz and Dai, 1996). The inter-

play of surface tension and bending rigidity defines a

characteristic lengthscale k�1 [
ffiffiffiffiffiffiffiffi
k=g

p
; 30� 90 nm.

Minimization of this energy results in the equilibrium

membrane displacement u(r), and is reported in more

detail elsewhere (Evans et al., 2003). We find uðrÞ ¼R
Gðr� r9Þf ðr9Þd2r9 with the Green’s function (the respon-

se to a point force) given by

Gðr� r9Þ ¼ � 1

2pg
½K0ðkjr� r9jÞ1 log kjr� r9j�; (2)

where K0 is a modified Bessel function (Abramowitz and

Stegun, 1984), which decreases exponentially over a size

k�1. The membrane displacement is discussed further in

Models for Membrane-Bound Proteins.

Overlap of displacements due to neighboring inclusions

lead to membrane-mediated interactions between them. The

interaction potential F(r) between two similar inclusions

separated by a vector r is obtained by inserting the total force
distribution f(r9) 1 f(r9 1 r) into Eq. 1 and identifying the

r-dependence of the resulting energy (see Evans et al.,

2003, for the general theory). The interaction energy per in-

clusion (interaction potential) reduces to

FðrÞ ¼ � 1

2

ð
d2r9

ð
d2r0f ðr9Þf ðr0ÞGðr� r91 r0Þ; (3)

where G(r) is the real-space Green’s function given by Eq. 2.
If the inclusions have a circular symmetry (f(r9) ¼ f(r9))

and do not overlap (r[ 2b where b is the spatial extent of

the force), we have been able to determine the interaction

potential exactly in an analytic form

FðrÞ ¼ 1

4pg
z
2
K0ðkrÞ; (4)

where z ¼
R ‘

0
2pr9 dr9cðr9ÞI0ðkr9Þ characterizes the

strength of the interaction (I0 is another modified Bessel

function; Abramowitz and Stegun, 1984). The interaction is

everywhere repulsive in the regime of validity r[ 2b.

MODELS FOR MEMBRANE-BOUND PROTEINS

Up to this point, we have been able to avoid making any but

a few rather general assumptions about the form of the force

exerted by the membrane inclusions. We will now proceed

to consider some specific models for the force distribution.

We do this both to make possible the later quantitative

comparison with experiments and to demonstrate how such

forces are expected to arise on general physical grounds. The

force distributions and the subsequent membrane deforma-

tions (from Eq. 2) are shown in Fig. 1.

Random coil polymers

In this section we treat caveolin proteins as flexible, linear

polymer chains in the random coil configuration, anchored to

the membrane. The idealized picture enables us to extract an

analytic estimate of the force distribution. In the language of

polymer physics (de Gennes, 1991), the caveolin homo-

oligomer can be viewed as a brush of Q ’ 16 polymer

chains, grafted by one end to a small patch of membrane of

radius a. The flexible chains on average arrange themselves

radially to form a hemisphere of radius b (Fig. 1 a). Thus for
radial distances a\ r\ b one finds a corona of randomly

coiled polymer chains with a chain density that is larger near

the core and smallest on the outskirts of the distribution.

A central concept in the theory of polymer physics is the

existence of a correlation length or blob size j(r) (de Gennes,
1991), which is roughly the distance between interchain

contacts in the corona of the caveolin brush (viewed as

a semidilute polymer solution). Each chain can then be

thought of as a string of correlation blobs extending radially

outwards, with small values of j corresponding to large

densities of monomers. The classical Daoud-Cotton model

(Daoud and Cotton, 1982) takes advantage of the fact that the

surface area of a hemisphere of radius r is approximately

filled by Q close-packed blobs, to deduce the scaling of the

correlation length, jðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
2p=Q

p
. It can be shown (de

Gennes, 1991) that the work done in generating each blob is

kBT, independent of the blob size. Thus we may write the

pressure in this region as the energy per blob divided by the

volume of a blob,

f ðrÞ ¼ � kBT

jðrÞ3
¼ � Q

2p

� �3=2
kBT

r
3 ; (5)

which is a result that is valid for a \ r\ b, and which is

consistent with more detailed calculations (Bickel et al.,

2001; Breidenich et al., 2000). The physical origin of this
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pressure can be understood as simply due to the exchange of

momentum due to collisions of the polymer chains with the

membrane. It is therefore purely entropic in origin, as

evidenced by the overall kBT energy scale. For r [ b the

pressure is zero since the chains have finite length (in fact, it

is exponentially small; Bickel et al., 2001; Breidenich et al.,

2000). The pressure in the core binding region is assumed

constant and must involve a total force equal and opposite to

that applied by the corona, as

f ðrÞ ¼ E0

a3

1 if 0\r\a

� a
3
=r

3

2ð1� a=bÞ if a\r\b

0 if r[b

:

8>>>><
>>>>:

(6)

Note that the strength of the force is characterized by the

energy scale, E0 ¼ f(r ¼ 0)a3. For the Q-chain oligomer, it is

E0 ¼ 2 kBT(Q/2p)
3/2(1 � a/b) ; 4 kBT.

Block distribution

We believe that the polymer brush model captures some of

the fundamental properties of a collection of large hydro-

philic proteins anchored to a biomembrane, namely: 1),

a downward pressure exerted by the cytosolic portion of the

proteins, combined with 2), an upward pull from the anchors

(the hydrophobic region of the proteins). However, it

employs rather strong assumptions (random coil configura-

tion, absence of internal structure, and large size of the

polymer chains) which are certainly not satisfied for the

protein caveolin. The simplest example of a general force

distribution that satisfies the criteria above is a block

distribution, for which the force exerted by the hydrophobic

anchors (between 0\ r\a) and the hydrophilic sections (a
\ r\b) are both constant: E0/a

3¼ fr\a ¼ (1� b2/a2)fa\r\b.

The membrane deformation for such distribution is larger

than for the brush distribution for the same strength, as

characterized by the energy E0, since the force is not

concentrated near the center of the distribution (Fig. 1 c).

BUD STRUCTURE AND MORPHOLOGY

Caveolae formation involves a hierarchy of self-organiza-

tion, ranging from the nanometric scale (oligomers of ;15

particles and size;5 nm) up to buds of radius;100 nm. We

review briefly the theoretical framework of thermal self-

organization (Safran 1994), and give insights on the caveolin

homo-oligomer formation, which we view essentially as

a micellization in two dimensions. We then describe in some

detail the formation of caveolae buds.

Consider a solution of particles of average surface fraction

f, that can exist either as isolated entities or in larger

aggregates (homo-oligomers) of p particles and of energy

Ep¼ pep. The concentration Cp of p-sized aggregates follows
a Boltzmann law (Safran 1994): Cp ; e�ðep�mpÞ=kBT, where m
is the chemical potential of the particles, usually fixed by the

average concentration f. There is an energetic tendency to

form aggregates if the energy per particle ep is (at least in

some regime) a decreasing function of the aggregation

number p. It overcomes the entropic dispersive effect beyond

a critical value of f (the critical aggregation concentration),

usually defined as the concentration at which the density of

aggregates is equal to the density of isolated particles. At the

critical aggregation concentration and above the average size

FIGURE 1 (a) Sketch of the blob model

for the anchored protein aggregate and (b)
force distribution for the two models used in

the article: brush distribution (dashed, cor-

responding to a) and block distribution

(solid). The membrane is pushed down by

the corona of grafted polymers out to r¼ b¼
5 nm and is pulled upwards by the anchored

core inside r9 ¼ a ¼ 2 nm. (c) The

corresponding membrane deformation u(r)

in unit (E0=k)a for k
�1 ¼ 30 nm. The brush

distribution has a weaker effect on the

membrane because the force is mostly

concentrated near its center (r ¼ 0). For

aggregates residing on the cytoplasmic face

of the membrane, including caveolin homo-

oligomers, the cell interior would be above

the membrane.

2052 Sens and Turner

Biophysical Journal 86(4) 2049–2057



p* of the aggregates is the one that minimizes the energy per

protein in the aggregate. The root mean-squared deviation

Dp from the average depends upon the steepness of the

energy variation around that minimum. Expressed in the

form of equation, these conditions yield (for p� � 1):

ep� � mcac ¼
@ep
@p

jp� ¼ 0 Dp ¼
ffiffiffiffiffiffiffiffiffiffi
kBT

@
2

pEp

s
jp�: (7)

The driving force for homo-oligomerization is an attractive

interaction between specific motives on the N-terminal of the

protein (Sargiacomo et al., 1995). We proceed by assuming

that all proteins in the interior of the oligomer experience

a mutual attraction, and contribute to the oligomer energy Ep
via a negative linear term �m9p. Proteins in the outskirts of

the oligomer on average experience less attraction, as they

have less neighbors. They increase the energy Ep by a factor

1pb
ffiffiffi
p

p
, where b is the energy loss (per protein) for be-

ing on the outskirts (the equivalent of the surface tension of

a liquid). Bringing proteins together also leads to steric and/

or entropic repulsion (crowding). For a polymer brush, for

instance, the latter contribution to Ep is 1ap3/2 (see Eq. 5).

Solving Eq. 7 with Ep=p[ ep ¼ a
ffiffiffi
p

p
1pb=

ffiffiffi
p

p � m9, the

experimental observation (oligomers containing 14–16

proteins; Sargiacomo et al., 1995) are consistent with a ¼
2 kBT and b ¼ 10 kBT. Both numbers are physically

reasonable: the frustration a which results in bringing many

proteins close to one another might be expected to be

approximately of the order of kBT per protein, and the

calculated energy loss b for proteins on the outskirts of the

oligomers is approximately of the order of hydrogen bond

energy (10 kBT) per protein. Although quite crude, this

model provides a thermodynamic description for the first

level of self-organization in caveolar membranes, which is

able to reproduce the experimental observation on caveolin

oligomerization, namely p� ’ 15 and Dp ’ 2.

The formation of the caveolae themselves can be

described more accurately, as we will now show. Inasmuch

as caveolae involve a large number of oligomers, a precise

description at the molecular level seems less crucial. We

model the V-shaped invagination by a closed sphere of

radius R. Thus we neglect the small caveolae ‘‘neck,’’ where

the quasispherical bud joins onto the quasiplanar membrane.

This is one of the core simplifications of our approach, which

is valid provided that the neck geometry is substantially

controlled by specific proteins (such as dynamin) and is

rather independent of the caveolae radius. There is ex-

perimental evidence (Oh et al., 1998) to show that the com-

position of the caveolae neck is indeed very different from

the composition of the caveolae themselves (this is a generic

feature of large membrane invaginations).

Following these assumptions the neck energy has little

influence upon the equilibrium features that we discuss

below (radius, composition, critical budding concentration),

but enters the thermodynamic theory as an addition to the

energy barrier to be overcome to reach the equilibrium state.

This does not impose any additional limitations on our work,

inasmuch as we are interested in calculating the equilibrium

bud conformation, and do not discuss how this equilibrium is

reached.

The bending moments exerted by the protein oligomers,

which are all on the cytoplasmic side of the membrane,

drives the bud formation, expected to occur above a critical

budding concentration (cbc) of oligomers (see Fig. 2). For

small concentration f \ fcbc (Fig. 2 a), the membrane is

uniformly covered by oligomers and remains almost flat.

Buds start forming as the concentration increases, and

outnumber isolated oligomers at the cbc (Fig. 2 b). If the
concentration is increased further (Fig. 2 c), then the

concentration of isolated oligomers, and the bud size, remain

almost constant (f1 ¼ fcbc), whereas the number of buds

increases.

The free energy per membrane inclusion in the bud eb (Eq.
8 below) contains several contributions. Energy is gained if

the membrane curves to accommodate the deformation

imprinted by the caveolin oligomer. A membrane curving

away from the caveolin aggregate is favored (first term,

right-hand side of Eq. 8). In the limit of small curvature, the

energy reduction per oligomer is of;�Drr/R (Eq. 9). On the

other hand, bud formation costs an energy that depends on

the bending rigidity and surface tension (second and third

terms, RHS of Eq. 8), and leads to higher local oligomer

concentration, modifying the pair interaction energy (fourth

term, RHS of Eq. 8). This interaction is characterized by the

second virial coefficient B2 (Eq. 9), and involves the

interaction potential V(r) (see Results for Various Force

Distributions). The last term in the RHS of Eq. 8 is the

mixing entropy of a gas of membrane inclusions on a lattice,

eb ¼ �Drr

R
1 2

ks1

fR
2 1

gs1
f

1f
kBTB2

s1

1 kBT logf1
1

f
� 1

� �
logð1� fÞ

� �
; (8)

where s1 ¼ pb2 is the oligomer area, and with

Drr [

ð
d2r

2
r
2
f ðrÞ B2 [

ð
d2r

2
1� e

�VðrÞ=kBT
� �

: (9)

FIGURE 2 Sketch of bud formation upon increase of oligomer concen-

tration. (a) Below the critical budding concentration (cbc), the membrane is

uniformly covered by isolated oligomers. (b) At the cbc, buds have formed

and outnumber isolated inclusions. (c) Above the cbc, the size and shape of

the buds remains the same, and their number increases with the concen-

tration.
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Minimizing this energy with respect to R gives the optimal

bud radius R* ¼ Rmin/f, where Rmin [ 4ks1/Drr corresponds

to the minimal radius of a bud densely packed with caveolin.

Further energy minimization leads to the optimal amount of

protein f* recruited in the bud, defined by

logð1� f
�Þ

f
�2 1

gs1

kBTf
�2 ¼

B2

s1
� 2ks1

kBTR
2

min

: (10)

This equation has a clear physical meaning. The protein

coupling to the membrane curvature effectively reduces the

second virial coefficient by an amount Beff
2 [ 2 ks21=

ðkBT R2
minÞ, which indicates an attraction between oligomers

(Leibler, 1986).

The optimal concentration of Eq. 10 corresponds to an

energy minimum e�b. At the cbc (Eq. 7), it is equal to the

oligomer chemical potential: e�b ¼ mcbc. The latter can be

related to the concentration f1 of isolated oligomer via m ¼
log(f1/(1� f1))1 2B2f1, which is the chemical potential of

a gas on a lattice with pair interaction. The equation defining

the critical budding concentration is

log
fcbc

1� fcbc

1 2
B2

s1
fcbc ¼ log

f
�

1� f
�

1 2
B2 � B

eff

2

s1
f

�
: (11)

The mean variation of the radius DR2 [ hR2i � R*2 can be

approximately calculated by using a steepest descent method

to calculate moments of the bud size distribution (Eq. 7). We

find ðDR=R�Þ2 ¼ kBT=ð16pkÞB92=ðB92 � Beff
2 Þ, where B92[

B2 1 s1/(2f*(1 � f*)) [ 0 includes both the interaction

between brushlets and the entropic contribution (note that if

B92 \ 0, the inclusions spontaneously demix on the flat

membrane). The mean radius variation shows the signature

of the membrane curvature instability mentioned earlier

(Leibler, 1986). If the coupling between membrane and

inclusion is sufficiently strong: Beff
2 [B92, or D2

rr[8

kBT kB92, then small fluctuations of any lengthscale are

unstable and the mean variation of radius becomes large. The

actual dispersion in bud size depends on how close we are to

the instability. It is;6% for the parameters used below. Note

that variations in shape that conserve the mean curvature of

the membrane should be larger, as they only cost a fraction of

the energy penalty corresponding to variation of the bud

global size. From electron micrographs of caveolar mem-

branes, the projected radius variation is ;20% (Rothberg

et al., 1992; see also Fig. 13.48 in Alberts et al., 1994).

Numerical calculation of the bud radius and protein

concentration in the membrane is shown in Fig. 3 upon

variation of the surface tension for different values of the

coupling strength (for an attractive energy Eatt ¼ 0.5 kBT, see
Results for Various Force Distributions). A strong variation

in bud size is observed for small surface tension. At larger

tension, the radius is almost insensitive to g. Bud formation

is, however, less favorable, as can be seen from the increase

of the cbc. Our model also predicts the existence of a critical

point (P. Sens and M. S. Turner, unpublished results), hence

a possible coexistence of buds of different radius, connected

to the curvature instability studied by Leibler (1986). We

will not discuss this further here, as it is probably not relevant

to the problem of caveolae formation.

We have derived the bud morphology as a function of two

variables that depend on the actual shape of the force

distribution, B2 and Drr. To make quantitative prediction, we

study below two ‘‘extreme’’ force distributions.

RESULTS FOR VARIOUS
FORCE DISTRIBUTIONS

In this section we discuss the results above for the polymer

brush model and the block model. The force distributions

involve three parameters. The lengthscales a and b can be

measured experimentally: a ’ 2 nm and b ’ 5 nm. The

energy scale of the force E0 can be calculated for the brush

model, and will be estimated for the block model (Eq. 6). We

present results for the minimal radius Rmin (connected to the

force moment Drr) and the membrane-mediated interaction

F(r). The excluded volume B2 involves the full interaction

potential and is discussed at the end of this section.

The calculation results in a unified description of the force

distribution via the energy scale E0 and the ratio of size of the

protein aggregate over deformation range ka (for ka � 1).

The bud radius is Rmin/b ¼ ak/E0, with

ablock ¼
16a

b
; 6 abrush ¼

16

3
21

a

b

� �
; 13: (12)

FIGURE 3 Variation of the caveolae preferred radius R* (in nm) with the

surface tension for a short-range attraction of Eatt ¼ 0.5 kBT between

brushlets (see Results for Various Force Distributions). Two values of the

coupling strength E0 are displayed: E0 ¼ 10 kBT (thin line) and E0 ¼ 13 kBT

(thick line). The inset shows the variation of the bud composition f* (solid)

and critical budding concentration (dashed) for the two coupling strengths.

The other parameters are a ¼ 2 nm, b ¼ 5 nm, and k ¼ 20 kBT.
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The oligomer-oligomer interaction is given by Eq. 4, and

involves the force moment z ¼ �b(ka)2E0/a, with

bblock ¼
pb

2

8a
2 ¼ 2:5 bbrush ¼

3pb
2

8aða1 2bÞ ¼ 1:2: (13)

Brush distribution

For ideal Gaussian chains, the energy scale given by Eq. 6 is

E0 ’ ðQ=2pÞ3=2 ; 4kBT. Most of the force is concentrated

near the center of the distribution, and has a small effect on

the membrane. Fig. 1 shows that the deformation is quite

small (;0.4 nm). However, collective effects lead to the

formation of fairly small buds of minimum bud radius

Rmin ’ 300 nm (much larger, however, than the caveolae).

The membrane-mediated interaction between protein aggre-

gates is very small, of ;10�3 kBT.

Block distribution

The block distribution is probably more relevant to the case

of stiff, short proteins such as caveolin. We choose the

strength of the force so that each protein contributes to the

kBT of energy as E0 ’ 10 kBT, which imposes a displace-

ment u(r ¼ 0) ¼ 2 nm (Fig. 1). The corresponding minimum

bud radius, Rmin ’ 60 nm, is comparable to the radius of

caveolae. Radius variation with surface tension is shown in

Fig. 3. The interaction potential is F(r) ¼ 0.02 K0(kr) kBT.
We believe that, although small, this repulsive interaction

might be responsible for the remarkable phase behavior of

the proteins at the surface of the buds (see Microphase

Separation at the Bud Surface).

Second virial coefficient and critical
budding concentration

The virial coefficient B2 defined by Eq. 9 involves the

interaction potential V(r) describing the membrane-mediated

physical interaction of Eq. 4. The hard-core repulsion, by

which two oligomers cannot occupy the same patch of

membrane, is taken into account via the lattice gas entropy of

mixing included in Eq. 8. Moreover, we have experimental

evidence (Schlegel and Lisanti, 2001, 2000) that there exists

short-range specific attractions between the protein side

chains (C-termini). To describe this attraction, we adopt the

exponentially short-range form Vatt ¼ �Eatte
�(r�b)/b, where

Eatt; kBT is the strength of the attraction, in range the size of

the b-oligomer. The short-range attraction acts to increase the

oligomer density inside the invagination. The resulting buds

are crowded with proteins f; 0.8, and are quite small, with

a radius ;R ¼ 70 nm (see Fig. 3).

MICROPHASE SEPARATION AT THE
BUD SURFACE

One peculiar feature of the caveolae is their striated texture,

believed to correspond to alignment of protein oligomers at

the surface of these ‘‘gnarly buds’’ (Rothberg et al., 1992;

see also Fig. 13.48 in Alberts et al., 1994). This finding

is particularly striking, inasmuch as it is not trivial to

understand how radially symmetrical oligomers may orga-

nize themselves into nonsymmetrical phases. We argue that

the stripe phase might be a signature of the membrane

mediated repulsion between protein aggregates (see Evans

et al., 2003, for a complete derivation of the results below).

Molecular dissection of the caveolin protein has shown that

the oligomers interact attractively via the third distal re-

gion of their C-termini (Schlegel and Lisanti, 2000). This

attraction may lead to gas/liquid phase separation of the

caveolin oligomers, which results in dense membrane

patches (the liquid) coexisting with less dense regions (the

gas). Our situation is more complex, as we have shown the

existence of an additional, membrane-mediated, longer-

range repulsion between oligomers. It has been recently

argued at the light of computer simulation (Sear et al., 1999;

Sear and Gelbart, 1999) that under this long-range repulsion,

the gas and liquid phases are broken into microdomains

(circles at small concentration, and stripes for higher

concentration). This is because large aggregates are costly,

due to the long-range repulsion, whereas small aggregates

(circles or stripes) are favored by the short-range attraction.

A simple theory with exponentially decreasing interactions

of range la (attractive) �lr (repulsive), and strength Ea and

Er shows (Evans et al., 2003) that periodic arrays of dense

and dilute regions are expected for strong enough repulsion

Erl
4
r [Eal

4
a . For oligomers, la ’ 5 nm, lr ; 50 nm, and

Ea ’ kBT. A repulsive interaction as low as 10�2 kBT
between protein oligomers can indeed produce a well-

ordered phase. For these parameters, the structure size is

approximately a few oligomer diameters, which compares

well with the experimental observations.

CONCLUSIONS

Caveolae are an important and much studied example of

bud-like invaginations formed by the concentration of

membrane proteins on cellular membranes. Much is known

about the various actors responsible for the formation of

these ‘‘buds,’’ but a global understanding of the process is

currently lacking. Such an understanding should include

general concepts of thermodynamics and membrane physics.

Based on this idea, we have constructed a theory for the

formation of caveolae that incorporates the structural

specificity of the membrane protein caveolin. Our results

sustain comparison with experimental data for caveolae.

Proteins in the caveolin family are known to play a crucial

role in the formation of caveola, by forming homo-oligomers
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that concentrate in the buds. We argue that asymmetrically

anchored membrane proteins (or protein oligomers for

caveolin) can apply forces to the membrane. We examined

several models for the origin and magnitude of these forces,

which may be purely entropic in origin or may result from

stronger interactions. Such forces act to exert bending

moments on the membrane and drive the formation of bud-

like structures, for which we are able to make theoretical

predictions. Our model correctly reproduces the size of the

buds (of ;100 nm), and provides a physical explanation for

the origin of the morphological striations observed on their

surface.

Our results also shed light on several experimental

observations concerning the function of caveolae and the

result of caveolin mutation. It has recently been suggested

that caveolae-like domains play a critical role in the

mechanosensing and/or mechanosignal transduction of the

extracellular signal-regulated kinase pathway (Park et al.,

2000). We predict that although the membrane tension has

little effect on the size of the buds (caveolae indeed have

a similar structure in different kinds of cells, which possibly

bear different tensions), the amount of caveolin protein

required to observe bud formation does increase strongly

with surface tension. Increasing the tension (either via a shear

stress or by direct cell manipulation) may result in the

disappearance of the buds if the available protein amount is

insufficient. This is a testable prediction, as the tension of

cell membranes is affected by direct cell manipulations such

as micropipette experiments (Sheetz and Dai, 1996).

We have also described how the control of the

morphology of caveolae can be achieved in a number of

ways, including by the level of cholesterol in a membrane.

High cholesterol content in membrane is known to result in

higher membrane rigidity, driving an increase in the bud

radius. The existence of lipid rafts is often related to the

formation of caveolae. The influence these ordered mem-

brane domains have on the physical properties of the

membrane is currently not known, but modifications of the

membrane mechanical properties by rafts can easily be

included in our model. The formation of rafts could also

promote the aggregation of caveolin in caveolar domains,

without qualitatively affecting the physical picture that

emerges from our model.

Finally, our theory also provides a framework for the

understanding of caveolae formation in mutant caveolin

systems (Li et al., 1998). Mutants which lack the self-

attractive segment of the N-termini (responsible for the

formation of the homo-oligomers) are still competent to

drive vesicle formation, but result in much larger buds R; 1

mm. This is consistent with the fact that the force exerted by

isolated proteins should be ;10 times smaller than the force

exerted by oligomers resulting in a 10-fold increase of the

bud radius. Mutants which lack the mutually attractive

C-terminus result in similarly larger buds. Within our theory,

this mutation results in a weaker oligomer-oligomer at-

traction, hence in a lower density of caveolin in caveolae and

therefore larger buds. However, our theory predicts that

oligomer attraction should not strongly influence the bud

size. A natural conclusion would be that the C-termini

contribute, either directly or indirectly, to the force exerted

on the membrane, and that this force is reduced in mutants.
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