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We study the effect of random inhomogeneous connections on a continuous field description of neural tissue.
We focus on a regime in which persistent random fluctuations in activity arise spontaneously in the absence of
either time-varying or spatially inhomogeneous input. While present in real tissue and network models of
discrete neurons, such behavior has not been reported in continuum models of this type. The activity contains
frequencies similar to those seen experimentally. We consider a power-law envelope r−� for the inhomogeneity
and present evidence that the statistical coherence �a measure of two-point correlation� rapidly percolates
across the system as � is reduced below �c�1,2 in one and two dimensions, respectively.
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INTRODUCTION

Continuum neural field �CNF� models, of the type first
proposed by authors such as Wilson and Cowan �1� and
Amari �2�, have proved to be of enduring interest to theoret-
ical neuroscientists. These models treat neural tissue not as
discrete cells, but as a continuous medium, with each point
in space characterized by the average membrane potential �or
“activity”� of cells at that point.

The dynamics of the activity in a general CNF model are
governed by the equations

�u
�u

�t
= − u�x,t� + �

�

wuu�x,x��fu„u�x�,t�…dx� − g

��
�

wvu�x,x��fv„v�x,t�… ,

�v
�v
�t

= − v�x,t� + �
�

wuv�x,x��fu„u�x,t�… − g

��
�

wvv�x,x��fv„v�x,t�… , �1�

where � denotes the extent of the system, and the scalar
fields u�x , t� and v�x , t� represent the activity of populations
of excitatory and inhibitory neurons, respectively. The “firing
rate” functions fu,v describe the conversion between activity
and firing rate for each population, and wuu�x ,x��, etc. are
continuous functions describing the strength of connections
between each population from point x� to point x.

To simplify these equations a number of approximations
can be made. Experimentally, it is found that connectivity of
inhibitory interneurons is short ranged �3�, so we approxi-
mate that the inhibitory population only acts locally
wvu,uv�x ,x�����x−x�� and we ignore recurrent inhibition,
setting wvv=0 �4�. From experiment the firing rate function
for a population of excitatory cells is known to be of sigmoid
form whereas inhibitory cells are found to have an approxi-
mately linear response in the phenomenological range of ac-
tivity �5,6�. We therefore take fv�v�=v and fu�u�= f�u�,
which for analytic tractability we approximate as a step func-

tion f�u�=��u−��, where ��y�=1 for y�0, and ��y�=0
otherwise. This results in the equations

�u
�u

�t
+ u�x,t� = �

�

w�x,x��f„u�x�,t�…dx� − gv�x,t� ,

�v
�v
�t

+ v�x,t� = f„u�x,t�… , �2�

which we use throughout the rest of this paper, and can be
described as a nonlinear negative feedback model �4,7�. The
constants g and �u,v give the relative strength of the inhibi-
tory population and the response time of the populations,
respectively. To reduce the number of free parameters we
choose �u=�v, this then being the only microscopic relax-
ation time for the system �this choice does not qualitatively
affect our results, and we examine it further in Sec. V and in
the supplementary material �8��; the choice �u=1 then sets
the time units of the system. A recent review of CNF models
�7� discusses other variations of this model �for example the
“linear feedback” model which we discuss in the Conclu-
sions and in supplementary material �8��, and the solutions
they support. These include traveling wave fronts and pulses
as well as stationary “bumps” of activity, which have been
linked to epileptic seizure �9� and working memory models,
respectively. Also, Folias and Bressloff �10� show that, with
the addition of external input, stationary activity patterns can
go unstable in favor of “breathing” fronts or bumps, and
breathers which emit traveling pulses.

A common assumption in previous work on CNF models
is that the neural tissue has a connectivity w�x ,x�� which is
both homogeneous and isotropic in space, using, e.g., highly
localized exponential or Gaussian functions of separation
�x−x��. There is some experimental evidence broadly justi-
fying such choices; for example, Hellwig �11� finds a Gauss-
ian distribution for connections between nearby pyramidal
neurons in rat visual cortex. Most studies, however, also
show other connections, for example, nonlocal “patchy” con-
nections in visual cortex �12�, or heterogeneity in synaptic
properties of pyramidal cells in prefrontal cortex �13�. In this
paper we address such variation by adding an inhomoge-
neous component to a Gaussian connection function. Impor-
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tantly, such connections would seem to be necessary on gen-
eral grounds to ensure nontrivial function in neural tissue.

Previous work by Bressloff �14� introduced a particular,
periodic inhomogeneity as a short-length-scale modulation
of an otherwise homogeneous connection function. Traveling
wave front solutions were found to have speed that depended
greatly on the length scale of the inhomogeneity. Other work
includes �15� where long-range horizontal connections are
included in a two-dimensional �2D� model.

In the present work we adopt a more general approach
and assume that neural connections are stochastically distrib-
uted. The effects of long-range connections are investigated
by convoluting a heterogeneous connection function with
correlation length 	 with a power-law function of separation
in both one and two dimensions.

With certain choices of parameters we observe different
behavior in a CNF model: spontaneous persistent activity.
Broadly speaking, we see distinct regions of the system
where activity stays above threshold �, and regions where it
fluctuates about threshold. Fluctuations and persistent activ-
ity are phenomena commonly observed in neural systems,
e.g., in the various rhythms seen in electroencephalogram
�EEG� data. We show here that by inclusion of heteroge-
neous connections CNF models can exhibit such behavior
without the need for external input.

I. HETEROGENEOUS CONNECTION FUNCTIONS

We construct our weight function numerically by taking a
homogeneous function of separation and adding an inhomo-
geneous component,

w�x,x�� = wH��x − x��� + AwI��x − x����w1�x� + w2�x��� .

Here wH is a simple Gaussian, wH�y�=e−y2
/�
, where the

integrated weight is normalized to unity, and the unit width
sets the length scale of connections in the system. The inho-
mogeneous envelope is given by

wI�y� = N
�y�−�

1 + �y�−�
, �3�

where � determines the range of the connections, and N is
chosen so that integration of wI over a system of length L
gives unity.

The functions w1 and w2 vary randomly in space and are
taken to be positive and to have a spatial correlation length
	. We include functions of both x and x� in order to remove
any bidirectionality; although a connection function that is
separable in this manner is a somewhat special case, it none-
theless represents a significant generalization over the more
limited connection functions chosen in previous studies �see
the Introduction�. For simplicity, w1 and w2 are chosen to be
different realizations of a function with the same statistics,
and can loosely be thought to represent additional �to the
homogeneous� connections into point x and out of point x�.
Note that, although the functions are constructed stochasti-
cally, they do not vary with time, so the system itself is
entirely deterministic; full details of the functions’ numerical
construction are given in the supplementary information �8�.

The inhomogeneity in the connection function is therefore
described by the length 	, amplitude A, and exponent �. The
regime 	�1 corresponds to locally homogeneous connec-
tions with inhomogeneous connections more important �less
efficiently averaged out� on longer length scales. In the rest
of the paper we choose 	=5 in 1D and 	=3 in 2D.

Equation �2� is solved by discretizing space and time and
using a fourth-order Runge-Kutta routine �16�; the integrals
are evaluated using fast Fourier transforms �17� by exploit-
ing the fact that they are of convolution form. In 1D we
choose a system size of L=500; the 2D simulations are much
more computationally expensive, so we choose a smaller
square system of side L=30. For the rest of this paper for
simplicity we fix �=0.1. Full computational details are given
in the supplementary material �8�. Figure 1 shows typical
realizations of the connection function for a 1D system with
different values of �.

II. SOLUTIONS SUPPORTED BY THE MODEL

Phenomena such as traveling wave fronts occur in homo-
geneous models due to the fact that the system can be ar-
ranged such that there are three uniform steady states ū1
� ū2� ū3, depending on the choice of parameters � and g.
Perturbation about these points shows the lowest �ū1=0� and
the highest �ū3=1−g� states to be stable. This bistability
leads to the existence of traveling front solutions �7�; if a
region of the system is in the uppermost steady state, and an
adjacent region is in the lowest steady state, then there will
be a continuous wave front connecting them. This will travel
at a speed determined by � �18�.

Wave front solutions also exist in our model in the large-�
�local connection� regime, provided that two steady states
exist throughout the system. If stable steady states exist they
are given by ū�x�= f�ū�W�x�, where we define

W�x� = 1 + A�
�

wI�x − x���w1�x� + w2�x���dx� − g .

If we assume that W�x��� for all x, we can still have trav-
eling fronts which connect two steady states �one of which
now varies spatially� and propagate at a time-varying speed
c�t�. If we decrease the value of � below some critical value
then, instead of a front propagating at finite speed, u in-
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FIG. 1. Typical realizations of the 1D connection function
w�x ,x�� for �= �a� 6, �b� 1, and �c� 0.1. We note that the homoge-
neous peak of wH is present in each case. In �c� the long-ranged
“tails” of inhomogeneous connection weight have small amplitude
due to our normalization; see text.
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creases to its uppermost steady state value at all points in the
system.

A different type of behavior is found when W�x� is not
greater than � for all x, i.e., there is only one stable steady
state in some regions while there are two in others. In a
regime where the inhibition �g� is sufficient to destroy the
topmost steady state for some x, we observe persistent fluc-
tuations in u�x , t�. The existence of the persistently fluctuat-
ing state �as opposed to a persistent stationary “bump”�
arises wholly due to the inhomogeneity, and is not possible
in the homogeneous model without some sort of external
driving.

Figure 2 shows some typical results for u�x , t� in a 1D
system with �=6 �local connections�. Note that if the regions
where the topmost steady state exists are not sufficiently spa-
tially extended �i.e., if A is too small or g is too large� then
u→ ū1=0 across the whole system. For consistency we
choose g �for given A� such that, in the large-� limit, W
�� for 	20% of the system �see �8��.

Inspection of the behavior for local connections �large ��
shows that there are regions where u→0 and regions where
u→W, with connecting regions where u varies persistently.
In regime of long-range connections �small ��, we see large
regions �where W�x���� in which u fluctuates coherently
remaining above �, with smaller regions where u fluctuates
more quickly about �. Further details and movies of fluctua-
tions in u�x , t� for �=6 and �=0.1 are available in supple-
mentary material �8�.

III. COHERENCE IN FLUCTUATIONS

In order to quantitatively correlate the activity at different
points x1 and x2 in the system, we use the quantity

2 =

u�x1�u�x2��t

2


u�x1�2�t
u�x2�2�t
, �4�

in which 
¯�t denotes a time average. Known as the statis-
tical coherence, 2 takes the value of 1 if the fluctuations in
activity at the two points are identical, and 0 if the fluctua-
tions are independent. If u�x1 , t� and u�x2 , t� are both con-
stant in time, one also obtains a large value of 2. The varia-

tion of this quantity across the system is examined in Figs. 3
�1D� and 4 �2D�.

Figure 3�a� shows the coherence between each point in a
1D system with large �. Here the regions with large 2 are
where u�x , t� is constant in time. Figure 3�c� shows the av-
erage of this over ten realizations of the connection function;
the regions where u is constant in time are averaged out, and
we see that there is little coherence in the fluctuations. Figure
3�b� shows the coherence for small � �long-range connec-
tions�. Here more of the system exhibits large 2, except in
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FIG. 2. Activity averaged over all space, 
u�x , t��x, and at par-
ticular points xi varying in time. Data here are from a 1D system
with �=6, A=1.9, and g=2.9.
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FIG. 3. �Color online� Statistical coherence �4� between points
in a 1D system with A=1.9 and g=2.90. �a� �=6 and �b� �=0.1
show an average over a single connection function. �c� �=6 and �d�
�=0.1 show averages over ten realizations of the connection func-
tion. The color scale for each plot is the same, and is shown bottom
right. Note the dramatic percolation of significant statistical coher-
ence away from the diagonal x1=x2 as � is reduced, increasing the
range of the inhomogeneities.
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FIG. 4. �Color online� Statistical coherence �4� between points
at positions x1 and x2 along a random line in a 2D system �L=30�
with A=2 and g=2.87, averaged over five realizations of the con-
nections. �a� shows �=6 and �b� �=0.1. A similar spread in infor-
mation is observed as � is reduced.
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the regions where u�x , t� fluctuates rapidly �where W�x����.
Averaging over ten realizations �Fig. 3�d�� shows much
higher coherence than for large � �local connections�. Figure
4 shows similar plots for 2D systems; here we randomly
choose a line across the system, and look at the coherence
between points on that line.

In Fig. 5 we show for the 1D system the average correla-
tion as a function of the distance between two points,

��X� = � 
u�x,t�u�x − X,t��t
2


u�x,t�2�t
u�x − X,t�2�t


x

�5�

where x= �x1� and X= �x1−x2�, i.e., we rewrite 2 in terms of
the spatial separation of points, and average over x. We see
that for both large and small � the coherence is large at small
separation, and decreases to a plateau as separation increases.
At large separations the coherence in approximately four
times larger in the long-ranged connection case than in the
local connection case.

The difference between the behavior in the long-range
and local connection regimes could have large implications
for the propagation of information across the system. For
long-ranged connections the coherence percolates the sys-
tem, i.e., we see the entire system behaving coherently.

In Fig. 6 we plot the quantity 
�u�x , t�− 
u�x , t��t�2�x,t, and
we see that this has a large value in the local connection

regime, and a small value in the long-range regime. We also
note that the change is not gradual, but that we can identify a
critical value of �. One can see that in the 1D case there is a
critical exponent of about �c=1; in the 2D case the change
appears more gradual, possibly related to the smaller system
size, and occurs between �=1 and 3.

IV. ANALYSIS OF THE ROLE OF �

We can better understand the behavior under local con-
nections �large �� by inserting the full connection function
into the differential equations �2�. If we assume that the func-
tion w2�x�� varies on length scales much longer than the
width of the function wI�y�, then we can approximate
w2�x���w2�x� and f(u�x� , t�)� f(u�x , t�) in the integrals,
giving

�u

�t
+ u = �1 + Aw1�x� + Aw2�x��f„u�x,t�… − gv ,

�v
�t

+ v = f„u�x,t�… . �6�

As we have said previously, if W�x� is such that there are
some regions where there are two steady states, and
somewhere there is only one, then we see persistent fluctua-
tion between the two. The above equations are local in na-
ture, and aside from the case of propagating fronts or pulses,
no information is transmitted across the system. The dynam-
ics depend only on the local W�x�. Further details of the
choice of the other parameters �A, g, etc.� required to give
persistent fluctuation are given in the supplementary material
�8�.

In the opposite regime of long-range connections �small
�� we can approximate wI�y� as a constant �wI	1 /L due to
normalization�, and the integrals over wI in Eq. �2� become
averages. Thus

�u

�t
+ u = f„u�x,t�… − gv + w1�x�F1�t� + F2�t� ,

�v
�t

+ v = f„u�x,t�… , �7�

where F1�t�=A
f�u��x and F2�t�=A
w2�x�f�u��x.
As described in Sec. II, in this regime there are some

regions where u remains above threshold; here v→1 and
f�u�=1, so the first two terms on the right-hand side of the
equation for u in �7� become constant 1−g. While w1�x�
varies spatially, F1 and F2 show little �or, asymptotically, no�
spatial dependence; hence there is large coherence between
points in these regions regardless of their separation. In re-
gions where u passes through the threshold � the first two
terms on the right-hand side of the equation for u �f�u�
−gv� will also change with time; the fluctuations in these
regions is what causes the change in F1 and F2, i.e., this
drives the fluctuations in the rest of the system.

The difference between the fluctuation in the large- and
small-� regimes can be seen in the power spectra of the
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FIG. 5. Average coherence in a 1D system with A=1.9 and g
=2.9 averaged over ten realizations shown as a function of separa-
tion for �=6 �solid line� and 0.1 �dashed line�. One standard devia-
tion variation is shown in the shaded regions. A similar plot for a
2D system is given in the supplementary material �8�. An increase
in the range of the correlations as � decreases is clearly visible.
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average activity. We define the power as the squared ampli-
tude of each frequency component of the discrete Fourier
transform of the time series of 
u�x , t��x. Figure 7 shows
spectra for �=0.1 and 0.6; broadly speaking, fluctuations
with frequencies at the lower end of this range have the
highest amplitudes when the connections are short ranged,
and vice versa. In both cases we see significant fluctuations
at frequencies in the range 0.05–0.3 �time units−1�.

V. DISCUSSION

As noted at the start of the paper, our choice �u=�v does
not qualitatively affect our results. It does, however, have an
influence on the degree to which we see some effects; for
example, the difference between the coherence at distant
points in the two regimes increases with increasing �v. We
include a discussion of this with plots similar to Figs. 3 and
5 for different �v in the supplementary material.

Another common model is that of linear feedback �19,20�,
replacing f�u�→u in the equation for v in Eq. �2�. Rather
than an inhibitory population of neurons, the v field in this
case could represent spike frequency adaption, synaptic de-
pression, or some other feedback process. We have found
that the behavior in the local connection regime is qualita-
tively the same for both models, but in the long-ranged re-
gime the linear feedback model cannot support persistent
fluctuations of this type. We present a plot which shows this
in the supplementary material �8�.

CONCLUSIONS

We have shown that the introduction of inhomogeneous
connections in a continuum neural field model can lead to
spontaneous fluctuations, without the need for external input.
Such behavior requires a feedback strength g strong enough
to destabilize the topmost steady state in some regions of the
system. This activity is reminiscent of activity observed in
living tissue.

Taking reasonable estimates �5,19� for the length and time
parameters �the response time �u is of order 10 ms, and the
width of wH is of order 1 mm�, we observe significant fluc-
tuations at frequencies in the range 5–30 Hz. This is in the
range of frequencies that are observed in real tissue, for ex-
ample, in theta �4–7 Hz� and alpha �9–11 Hz� rhythms seen
in EEG signals �21�.

For local connections there is little coherence between the
fluctuations in activity at distant points in the system. As we
increase the range of the connections, we reach a critical
value beyond which the system sharply crosses over to co-
herent behavior. We identify a critical value of this exponent
of �c�1 in the 1D case. In 2D the behavior is qualitatively
similar but the critical exponent has a larger value, perhaps
�c�2. The sharpness with which information percolates
above this threshold may be sensitive to computational limi-
tations on the system size and this makes it more difficult to
unambiguously identify the value of �c in 2D. Coherence in
fluctuation in continuum models could be analogous to syn-
chronous firing, which is seen in spiking network models
that treat cells individually �for example, �22��.

Finally, we speculate about the significance of the distri-
bution of the most inhomogeneous connections in living tis-
sue. If these are shown to be consistent with power-law con-
nections with exponents above �c then computational
activity with a significant spread of mutual information could
provide evidence for nonrandomness in these connections.
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