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We study the collective dynamics of groups of whirligig beetles Dineutus
discolor (Coleoptera: Gyrinidae) swimming freely on the surface of water. We
extract individual trajectories for each beetle, including positions and orien-
tations, and use this to discover (i) a density-dependent speed scaling like
v∼ ρ−ν with ν≈ 0.4 over two orders of magnitude in density (ii) an inertial
delay for velocity alignment of approximately 13ms and (iii) coexisting high
and low-density phases, consistent with motility-induced phase separation
(MIPS). We modify a standard active Brownian particle (ABP) model to a
corralled ABP (CABP) model that functions in open space by incorporating
a density-dependent reorientation of the beetles, towards the cluster. We use
our new model to test our hypothesis that an motility-induced phase separ-
ation (MIPS) (or a MIPS like effect) can explain the co-occurrence of high-
and low-density phases we see in our data. The fitted model then successfully
recovers a MIPS-like condensed phase for N= 200 and the absence of such a
phase for smaller group sizes N= 50, 100.
1. Introduction
There is now an extensive body of computer simulations and theoretical work
to suggest that aggregation can emerge, even when inter-particle interactions
are purely repulsive, e.g. steric contact forces [1–5]. The aggregation can be
thought of as arising from the competition between the accretion of free
motile particles on contact with a dense cluster and their departure from the
surface of that cluster following a re-orientational time lag. A form of non-equi-
librium phase separation can arise in which densely and sparsely populated
regions coexist. This is now known as motility-induced phase separation
(MIPS). This phase separation depends on the relationship between self-propul-
sion speed and local density. If the speed falls off sharply enough with
increasing density then a feedback loop can emerge in which slowing down
(due to higher density) promotes further aggregation. High-density clusters
then grow and the density in the dilute phase drops. As it does so the rate of
accretion onto the clusters drops until it again comes into balance with the
evaporation of particles from the cluster surface into the dilute phase. Even
steric repulsion is therefore enough to cause active, self-propelled particles to
accumulate in regions where they move slowly [6]. MIPS has been shown to
arise in active particle systems with a more general density-dependent propul-
sion speed [7]. Our study provides experimental evidence justifying the use of a
power law velocity-density dependence in such models.

This aggregation of motile particles in the presence of purely repulsive inter-
actions has attracted much attention from theorists working on non-equilibrium
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statistical mechanics attracted by possible insights to time-
reversal symmetries and entropy production. Numerical
investigations of MIPS have been carried out to examine the
affects of incorporating velocity alignment terms, varying
dimensionality and the effect ofmixtures of both active and pas-
sive Brownian particles. Thesemodels focus on particles in finite
space, e.g. with periodic boundary conditions [8–13]. However,
experimental analogues are rare with the few examples includ-
ing self-propelled robots, colloid systems and vibrated granular
systems [10,14–16]. To our knowledge, few corresponding
examples exist in living systems, although active phase
separation has been seen in bacteria [17] and mussels [18].

Another emerging strand of literature has begun to focus
on the role of inertia in self-propelled particle systems, lead-
ing to an equation of motion that is second order in time.
The presence of inertia has lead to observations of inertial
delay between particle velocity and body axis [19]. If the iner-
tial effect is strong enough it appears that the onset of MIPS
occurs at higher Péclet numbers (a dimensionless ratio of
self-propulsion speed to the rate of diffusion [20]) and can
vanish for large enough particle mass. Furthermore, before
the onset of MIPS, a novel phase coexistence between ‘hot’
and ‘cold’ regions develops where the kinetic energy per
particle (kinetic temperature) is low in the dense phase
and high in the dilute phase (a difference of a factor of
100 has been predicted) [21,22]. Similarly, it has been found
that the presence of inertia drastically changes the dynamics
of a rotating micro swimmer [23]. Experimentally, the realiz-
ation of inertia in self-propelled particle systems is seen in
active granule systems such as macroscopic ‘bristle bots’ or
‘vibro-bots’ which use either a small vibrating motor or are
placed on a vibrating plate with angled feet to provide self-
propulsion [16,24]. Beyond this, experimental realizations of
inertial delay are rare, particularly in living systems.

We study experimental footage of whirligig beetles
D. discolor containing between N = 50 and 200 individuals
that are moving freely on a water surface within a large circular
arena. Figure 1a depicts the experimental set-up with an overlay
representing the topologicalmethodwe employ for local density
estimation. These water beetles are ellipsoidal in nature with an
aspect ratio (froma top-downperspective)measured as approxi-
mately 2:1 and a body length of approximately 12 ± 1mm [25].
Whirligig beetles are a particularly useful study organism
due to their lack of group hierarchy and strong similarity
between individuals (both particularly important traits in the
context of MIPS). It is also relatively simple to collect top-down
two-dimensional video footage of their movement.

Previous studies have focused on their natural behaviour
and include observations of large-scale clusters (rafts), which
form during the day and can number from 100s to 1000s of
individuals [26,27]. These structures are noted for their
rapid dispersal (flash expansion events) and reformation
when threatened by predators such as fish. The rapid
break-up is thought to be caused by a cascading signalling
process in which beetles sense (via vision or sensation of
water disturbance) the movement of neighbours and react
accordingly by moving rapidly and often randomly, with
the onset dependent on the number of visibly startled beetles
[28]. In particular, the movement is directed away from the
group’s geometric centre and not the point of highest density
or from the location of the original beetle to startle [29]. Here,
we neglect any possible role of capillary interactions between
individual beetles [30], noting that these are probably less
significant for strongly self-propelled particles. Other studies
have focused on the individual movement capabilities of
whirligig beetles, with applications to the design of efficient
‘fast’ bioinspired artificial swimming robots [31–33]. Individ-
ual beetles have been previously observed moving with
maximum speeds of 160 body lengths per second (in bursting
events), reaching accelerations of 2.86 g, and maximum
turning rates of 77.3 rad s−1 [34–36].

We report evidence for a density-dependent swimming
speed which decays as a power law of density for different
populations sizes studied. This is indicative of a marked pro-
pulsion speed difference between the dense clustered phase
and dilute phases that are observed to coexist. We present a
simplemodel, based on themotion of active Brownian particles
(ABPs), that is able to capture the empirical density probability
density function (PDF) observed in the data. This model, which
we call corralled active Brownian particles, generates the turn-
ing of particles back towards the geometric centre of the
cluster. The turning is proportional to a strength coefficient τ
and a power α≥ 0 of density. Finally, we demonstrate the pres-
ence of inertial effects in the form of a short inertial delay
between the beetle’s body axis and its velocity vector.
2. Results
2.1. Speed and density
Using individual beetle trajectory data we extract the speed v
and density ρ averaged over particles and time. The speed here
is defined in the short time limit as the particle displacement
between individual frames and is calculated using a central
difference method for higher order accuracy. Note that the
crossover to diffusive behaviour is on much longer timescales
of 10–30 frames (see electronic supplementary material, figure
S6, consistent with electronic supplementary material, S5). The
density is a local (topological) measure of individual beetle
density, see methods. Figure 1b shows the averaged speed
for particles with density ρ, written v(ρ). This exhibits an
empirical power law scaling across a broad regime of densities
and appears to be quite consistent across different population
sizes. The slope associated with an exponent of −0.4 is shown
in figure 1b as a guide to the eye. At the very highest local den-
sities, we observe a marked break from the power law to
movement speeds increasing with density. We speculate that
this may be associated with the coordinated motions of
high-density domains in the cluster, moving as a rigid body.

2.2. Orientation–velocity correlation
As shown in figures 1c,d, we find the body axis leads the vel-
ocity by a positive lag time. The correlation function is given by

C(Dt) ¼ hV̂ i(tþ Dt) � n̂(t)it,i (2:1)

and measures the average scalar product between the orien-
tation at time t and the instantaneous velocity direction
at time t + Δt, where Δt is the time lag. All times are
discrete in units of the video frame interval (1/30 s), hence
the discrete points on figure 1d. The average h. . .it,i is over
time t and over the beetle trajectory index i. We only analyse
trajectories that we consider to be reliably collision free,
that is trajectories in which the minimum inter-particle
distance over the entire trajectory is greater than a threshold
of one body length, (see electronic supplementary material
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Figure 1. Beetle velocities scale with a power law of local density and exhibit a relatively short inertial delay of 13 ms. (a) A snapshot of the experimental set-up
and an overlay detailing the method for local density calculation using the Delaunay tessellation-based method (see methods §4.3). In the overlay, the red points
are particle (beetle) positions and lines indicate the Delaunay tessellation. The inset labels the angles and areas used to calculate the local density of the central ith
beetle, shown as a red star. The yellow polygon outlined in bold indicates the union of Delaunay triangles having this beetle as a common vertex. We label this set
of Delaunay triangles with the index j referring to each triangle as T (j)i , it is area is A

(j)
i , and the angle subtended at i as u

(j)
i . The local density is calculated as the

inverse of the average weighted areas A(j)i , with the angles u
(j)
i as weights, further normalized by a factor of 1/2π to account for the fact internal points satisfyP

j u
(j)
i ¼ 2p while points on the boundary satisfy

P
j u

(j)
i , 2p. See methods section for further details. (b) The relationship between beetle speed v (body

lengths per second) and local density ρ ( per body length squared) on a log-log scale. Each data point represents a bin-average with error bars showing 1 s.d. The
solid black line indicates a power law (ρ−0.4) as a guide to the eye. (c) Shows the inertial delay between a beetle’s velocity vector and its body axis orientation: the
orientation leads the velocity. The shaded ellipses represent the moving outline of the beetle over time. This is quantified in (d ), showing the orientation–velocity
time correlation function with a Gaussian fit superimposed near the peak, located at Δt = 13 ms (see inset). Only in (d ), we use the set of all N = 200 beetle
trajectories pre-filtered to remove (near) collisions (see electronic supplementary material for details).
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for details). The positive peak location corresponds to an
inertial delay of approximately 13ms.

2.3. Model: corralled active Brownian particles
To model the behaviour of the swarm, we develop a minimal
particle-based simulation and fit this to the data. This is based
on a standard ABP model (neglecting hydrodynamic inter-
actions and inertia) within the same framework as [1] but
with an additional reorientation term included in the orienta-
tional dynamics to account for the fact that our system is not
contained by periodic boundaries and therefore needs a
mechanism to corral the particles into the same region in
space—behaviour that is clearly exhibited by the beetles
themselves. To this end, we introduce a torque that tends to
re-orientate particles back towards the centre of mass of the
cluster (figure 2a).

This re-orientation, acts separately on all particles and is
assigned a strength that depends on the local density.
Models that incorporate similar torques, but designed to pro-
mote co-alignment, have been used to study the affect of
particle alignment on the onset of MIPS [8]. Torque terms
can also arise naturally as a consequence of particle geometry
[37] although we neglect this in our model. For simplicity,
our model employs self-propelling polar disks of uniform
radius a (with the diameter 2a considered equal to one
beetle length), self-propelled along the body axis (polarity)
n̂i ¼ [ cos ui, sin ui]

T , of the ith particle. Propulsion along the
n̂i direction involves a constant magnitude speed v0. The col-
lisions are soft-body interactions with a harmonic force on
particle i due to j of Fij ¼ �k(2a� rij)r̂ij for rij < 2a, Fij = 0 other-
wise. This involves the interparticle separation vector rij = rj−
ri, with ri the position of particle i, its magnitude rij and where
a hat (̂ ) denotes a unit vector throughout. The particles
follow over-damped Langevin equations of motion given by

@tri ¼ v0n̂i þ m
X

j=i

Fij (2:2)
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Figure 2. (a) Cartoon of the model. The particles are treated as soft, self-propelled disks that repel with a force F when overlapped, as in a standard ABP model.
However, they also experience a density-dependent re-orientation towards the centre of mass of the swarm (annotated geometric centre), represented by the curved
arrows. The reorientation depends on the local density and is assumed strongest at low densities. (b) The density PDFs for the experimental data (blue) and the
fitted model (red), evaluated for different numbers of particles N, as shown. The model dynamics correctly recover coexisting dilute and dense phases for N = 200
and a dilute phase alone for N = 50, the phase boundary is around N = 100. The model is parameterized once only, by fitting to the PDF for the N = 200 human
tracked dataset; the red curves for N = 50, 100 are the results of this model evaluated with different particle counts. The solid lines are the mean density dis-
tributions (kernel density estimates), the error bands indicate 1 s.d. Other simulation parameters in this and subsequent figures are μk = 316.2, Dr = 2.34 rad2 s−1

and v0 = 13.19 body lengths per second.
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and

@tui ¼ hi(t)þ tri(t)
�a(R̂i � V̂ i) � ẑ: (2:3)

Here, μ is a mobility parameter. However, both this and the
elastic constant k only appear in the product μk and so this
does not introduce an additional control parameter. The
angular noise ηi(t) has zero mean and is Gaussian distributed
according to 〈ηi(t)ηj(t0)〉 = 2Drδijδ(t− t0), where Dr is a
rotational diffusion coefficient; a positional noise term can
be neglected here. The re-orientation term in the angular
dynamics generates reorientation towards the centre of
mass with Ri = 〈rj〉− ri the vector pointing from a particle to
the centre of mass, and Vi the instantaneous velocity of par-
ticle i. The dot product with ẑ (out of the plane of motion)
converts this to a signed scalar, positive for anticlockwise
turns and negative for clockwise. Finally, the factor tr�a

i
(with α > 0) represents a simple choice for the density depen-
dence of the reorientation. All simulations are carried out in
unbounded 2D space, with the density that emerges within
the cluster controlled by the values of τ and α. All quantities
are reported as dimensionless throughout with times scaled
in seconds and lengths scaled with the beetle particle
length (disc diameter).
To reduce the dimensionality of the fitting process, we
determine the value of the rotational diffusion coefficient
by directly fitting to the mean square angular displacement of
the N = 200 beetle data, yielding Dr = 2.34 rad s−1. We also fix
the self-propulsion speed v0 as the average speed of beetles
that are freely moving (see electronic supplementary material
for a discussion of collision free trajectories), yielding v0 =
13.19 body lengths per second. We fit the free parameters
(μk, α, τ) by minimizing the error, using a Bayesian optimiz-
ation technique (see Methods), between the empirical
density distribution (PDF) for the N = 200 human tracked
beetle data (only) and the density distribution obtained
from a simulation with N = 200 particles (see the methods
section for details). The resultant density distributions, for
all datasets are shown in figure 2b, together with the results
from simulations of the model (fitted to N = 200 only, not
re-parameterized for each dataset) containing the correspond-
ing number of particles N = 50, 100, 200. Best-fit parameter
values are shown in table 1. We include an example simu-
lation for the fitted model evaluated with N = 200 particles
as electronic supplementary material, movie S8. Also
shown in figure 2b are the results of the best-fit model, simu-
lated at different N values, as shown. As the number of
particles increases, we observe a clear transition from a uni-
modal density distribution, with a single peak at low density
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move towards the bottom left corner, where re-orientation is weak.

Table 1. Best-fit values of the control parameters. These are inferred by
fitting the results of simulations performed on N = 200 particles, using
equations of motion (2.2) and (2.3), to the N = 200 beetle dataset. The fit
metric is a least-squares measure of the density PDF. We include v0 and Dr in
this table but note that they are fitted to data before using Bayesian
optimization to find τ, α and μk to reduce dimensionality. We measure all
lengths in units of the mean beetle body length.

parameter α τ (s−1) μk (s−1)

v0
(s−1)

Dr
(rad2s−1)

best-fit value 1.1 19.6 316 13.19 2.34
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(similar to a dilute gas phase) to a bi-modal distribution
(similar to a dilute gas coexisting with a dense liquid).
A similar trend has been observed in simulations [1], where
N directly controls the density and phase separation
(bi-modality) appears only above a critical threshold.

2.4. Phase diagram in α – τ space
Using the fitted value of μk, and the values of v0 and Dr pre-
viously extracted directly from the data, we compute the
density PDF generated by dynamical simulation of the
model over a large space of reorientation functions, parame-
terized by different values of α and τ that control the
functional form of the reorientation, as defined in equation
(2.3). The results are displayed in figure 3 where each of the
210 sub-panels represents a density PDF like those shown
in figure 2b. The density PDF for the N = 200 beetle data is
shown, identically, on every sub-panel (blue). The PDF
obtained by simulating each model, parameterized with
different α and τ values, differ between sub-panels (red).
The prefactor to the reorientation strength τ increases
across the rows, from left to right. This means that the sys-
tems represented in panels on the left of a row have an
unambiguously weaker turning reorientation than those on
the right. Weaker reorientation leads to a more diffuse
cloud of particles and a lower mean density. This is consistent
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with the one-phase region of dilute gas being located on the
left-hand side of (rows of) this diagram. Moving down the
columns corresponds to reorientation strength having a stron-
ger density dependence (exponent) α. Since the dense liquid
phase has a dimensionless density 1 & r & 2 there is rela-
tively little variation of the reorientation strength in the
liquid phase moving down the columns but the gas phase
typically has a density ρ≪ 1 and there is a correspondingly
stronger influence on reorientation in this phase.

In figure 3, we also identify the approximate location of
the phase boundary between a one-phase gas (low density,
uni-modal PDF) and the two-phase gas–liquid coexistence
(bi-modal PDF), see electronic supplementary material for
similar phase diagrams for N = 50 and N = 100. The slow
equilibration of systems with parameter values in the
bottom left corner of figure 3, corresponding to weak reorien-
tation, does not affect our conclusions: the density PDFs in
these systems may still be slowly shifting to even smaller den-
sities, meaning that they are even deeper in the gas phase
than they appear. It is significant that, in all cases, MIPS-
like phase coexistence arises for appropriate parameters τ
and α, corresponding to sufficiently strong turning, or ‘corral-
ling’, effect. This is sufficient to maintain high enough overall
system densities in much the same way that ABP models
need to sit above some critical density for MIPS to arise [1].
3. Discussion
While there is enormous contemporary interest in the physics
of active particle systems, it remains unclear how broadly
these ideas can be tested experimentally, especially in living
analogues. We focus on three separate concepts.

Phenomenological velocity–density relations play a cen-
tral role in foundational studies of MIPS [7] and can be
viewed as a fundamental feature in our current understand-
ing of the phenomenon. However, we are unaware of
studies that directly analyse this relationship, with Liu et al.
[18] a notable exception. In the present work, we report a par-
ticularly simple power-law scaling form for this relationship
in whirligig beetles that seems to hold over two orders of
magnitude in density. This may motivate the development
of active field theories that directly encode such a power law.

Secondly, there has been significant recent interest in the
role of inertial effects in collections of ABPs [19,21].We present
evidence for the existence of such inertial delay inmacroscopic
living systems, with inertial delays in the 10 ms regime. This
inertial delay can be described as ‘short’ given that the distance
moved in body lengths and the rootmean squared angular dif-
fusion are both only O(10−1) on this timescale. This gives us
some reassurance that non-inertial models, such as employed
in §2.3, may be adequate at the semi-quantitative level.

Thirdly, we show that a condensed ‘liquid-like’ phase of
whirligigs can coexist with a dilute ‘gas-like’ phase. This is
highly reminiscent of MIPS [1], a phenomenon that has been
widely studied but lacks experimental realizations, particularly
in living analogues. In order to study this phenomenon, we
developed a model of corralled ABPs that turn inwards, pro-
viding a mechanism to control the density of the swarm in
open space that seems broadly plausible in its mechanism.
We fit this model to experimental data and obtain results that
reproduce the bimodal density PDF and MIPS-like coexistence,
provided the systems are large enough. Finally, we speculate
that our model could be probed experimentally by studying
a group of whirligig beetles ‘doped’ with robotic beetles pro-
grammed to either turn towards the geometric centre, as
here, or responding to other interactions, such as nearest
neighbour alignment or attraction/repulsion.

Ourwork provides a newwayof understanding the behav-
iour of this insect, and the mechanism for the formation of
dense clusters of individuals, in terms of the MIPS paradigm.
MIPS is a phenomenon that has recently been identified in
the context of non-equilibrium physics. In this literature, self-
propelled particles (ABPs) with purely repulsive contact
forces have been shown to phase separate, forming similar
clusters. The fact that clustering occurs in the absence of any
attraction is a signature of the out-of-equilibrium nature of
the particles, i.e. that they are motile. By analogy, we suggest
that the phenomenon of beetle clustering need not involve
any direct attractive interactions. This was far from obvious
at the outset.We have shown that the beetle’s behaviour is con-
sistent with a corralled ABP (CABP) model that we develop.
This reproduces MIPS-like clustering. We do not view the cor-
ralling (turning) in our CABPmodel as a form of attraction but
believe that it is better viewed as providing a global constraint
on thedensity, necessary inunbounded space. This is because it
involves no pairwise attractive interactions. Also, in classical
ABP systems, density is regulated by the walls of a box (or its
periodicity), limiting its volume, but one would not say this
confinement provides an ‘attraction’, rather that it serves to
fix the density. The identification of a model insect system
that exhibits MIPS-like clustering is also likely to be of keen
interest to physicists, both as a rare example in multicellular
organisms but also for what it tells us about empirical
velocity–density relationships in such systems.
4. Methods
4.1. Experimental data
Our raw data consist of footage from experiments on varying
population sizes (50, 100, 200) of whirligig beetles (D. discolor
collected from the Raquette River in Potsdam, NY, USA) in a
cylindrical tank of water with a diameter of 1m and individual
beetles measuring 12 ± 1 mm in length along the major axis.
Each videowas filmed for a period of around 5min at a resolution
of 1920 × 1080 pixels and a frame rate of 30 frames per second (see
electronic supplementary material, movie S7 for a high contrast
example at N = 200). The camera was situated 1.96m above the
water level, a fluorescent light illuminated the apparatus at
730 lx. Beetles were not startled or given time-varying external
stimulus during filming and were allowed 20min acclimatization
time before filming. Beetles were fed at 07.00 and 19.00 (at the time
of filming sunrise and sunset where measured at 05.30–06.00 and
20.30–21.00 each day) and experiments performed between these
times. For the N = 200 population, footage was tracked by hand,
and for each population footagewas tracked using amodified ver-
sion of the network flow formulation (see an outline in our
methods, §4.2) which was validated by reference to the human
tracked set of data. These highly accurate tracks for individual bee-
tles represent their coordinates (in the laboratory frame) at each
time point, together with their orientations, velocity, and density
which we use in our analysis of the dynamics of the collective.
In the experimental footage, we observe a pronounced change
in behaviour across the three swarm sizes. The footage covering
the 50 beetles population is more erratic in character with
mostly short-lived cluster formation and a generally elevated pro-
pulsion speed (see electronic supplementary material, figure S2
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for speed distributions). The N = 100 and 200 beetles swarm
around relatively stable clusters. In these systems, a fraction of
individuals reside in a more dilute ‘corona’ around the main clus-
ter, corresponding to the dense and dilute phases, respectively.
The dense regions are notable for significantly decreased
self-propulsion speed.

4.2. Tracking
The individual beetle tracks were generated from centre of mass
coordinates and (major axis) orientations for each beetle using a
modification of the network flow method for multi-object track-
ing [38]. Our method [39] takes advantage of the fact we can
assume conservation of beetle population, whereas Li Zhang
et al. track pedestrian data in which many individuals leave
and enter the video frame. The coordinates and orientations
were gathered from raw video footage by training a neural net-
work on a set of validation footage which was tracked by hand
(logging positions orientations and linking beetle tracks).
Human marked tracks (N = 200 data) were also used to validate
the tracking method, and to fit the model.

4.3. Density
To calculate the local density at a beetle’s centre of mass, we use a
method based upon the Delaunay triangulation to assign an area
and therefore a number density to each beetle. Delaunay triangu-
lation-based methods of interpolating density fields from point
data have been used successfully in astronomy [40], and the esti-
mation of group density has been computed using alpha shapes
to calculate an area fraction [41], which is closely related to the
Delaunay triangulation.

Our method identifies the number density ρ(ri) of a point ri as
equation (4.1). For notation, we write the Delaunay triangles with
common vertex, ri, as T

(j)
i so that j is an index over this set of tri-

angles. Note that points on the edge of the convex hull, will
generally be associated with fewer Delaunay triangles since
the Delaunay triangulation only tessellates the convex hull. The
area of T(j)

i is written as A(j)
i , and similarly the angle made at

point i by the two edges of the triangle T(j)
i ending at i is u

(j)
i .

Refer to figure 1a for a visual representation of these quantities
on an example Delaunay tessellation computed from data.
Using this notation, the density at point i is equation (4.1)

r(ri) ¼ 1
2

P
j u

(j)
i

P
j u

(j)
i A

(j)
i

: (4:1)

To derive equation (4.1), we consider particle i as contributing u
(j)
i

of it is ‘mass’ to the area A(j)
i , this gives a normalized ‘area

per particle’ of 1
pA

(j)
i for triangle T(j)

i . Then to calculate a normal-
ized density, we take the average (weighted by the angles u(j)i ) of
this normalized area per particle and invert it yielding
p
P

j u
(j)
i =(

P
j u

(j)
i A

(j)
i ). Since a point in the interior will satisfyP

j u
(j)
i ¼ 2p and the boundary points will satisfy

P
j u

(j)
i , 2p

we divide this expression by 2π to arrive at equation (4.1).
The advantage of this approach, and our key reason for

taking it, is that it avoids dividing by areas individually. This
can lead to arbitrarily large local densities in the case of one tri-
angle having an extremely small area (sliver triangles). These
small triangles can form when three points in a Delaunay tri-
angulation are arbitrarily close to being collinear.

4.4. Model fitting
Our model parameters were tuned using a Bayesian optimization
framework [42]. The quality of fit is reported by the mean square
error between the simulation density distribution and the empiri-
cal distribution obtained from the data. The fitting itself employs a
Gaussian kernel density estimator on the experimental and simu-
lated density distributions with bandwidth parameter chosen
according to Silverman’s rule [43]. To calculate the fitting error,
the mean square error between the two kernel density estimates
was computed over a the range of the experimental data. In all
our simulations, we take a time step of 1/900 s. We discard the
initial 4500 time steps to eliminate short-lived initial transients in
the global density. Initial conditions for the simulations are ran-
domly drawn from uniform distributions, both for position and
orientation, with positions restricted to an square region of size
corresponding to a density ρinit = 0.5. Results are reported as
averages over three simulations with different random initial
conditions, each with the same set of fitted parameters.

4.4.1. Optimizing runtime
Running numerous simulations of the CABP model at N = 200 as
is required for the fitting process is computationally expensive. In
order to most efficiently deploy computation resources, we take
advantage of large scale parallelization on GPUs. We implement
the solver for the ABP model as a GPU (CUDA [44]) algorithm,
parallelizing across particle index.

Data accessibility. All data and the code used for its analysis are available
at the GitHub repository https://github.com/harveydevereux/CUDA-
Whirligigs. Instructions are provided in the top level README.md.
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