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Dynamics of passive and active membrane tubes

Sami C. Al-Izzi, abcd Pierre Sens, cd Matthew S. Turneref and
Shigeyuki Komura *g

Utilising Onsager’s variational formulation, we derive dynamical equations for the relaxation of a fluid

membrane tube in the limit of small deformation, allowing for a contrast of solvent viscosity across the

membrane and variations in surface tension due to membrane incompressibility. We compute the

relaxation rates, recovering known results in the case of purely axis-symmetric perturbations and making

new predictions for higher order (azimuthal) m-modes. We analyse the long and short wavelength limits

of these modes by making use of various asymptotic arguments. We incorporate stochastic terms to our

dynamical equations suitable to describe both passive thermal forces and non-equilibrium active forces.

We derive expressions for the fluctuation amplitudes, an effective temperature associated with active

fluctuations, and the power spectral density for both the thermal and active fluctuations. We discuss an

experimental assay that might enable measurement of these fluctuations to infer the properties of the

active noise. Finally we discuss our results in the context of active membranes more generally and give

an overview of some open questions in the field.

1 Introduction

Membrane tubes, formed by bilayers of phospholipid mole-
cules, are structures that are ubiquitous in cells. They are vital
to the function of many organelles including the peripheral
Endoplasmic Reticulum (ER).1 So-called membrane nanotubes
have been identified more recently and implicated as a pathway
in inter-cellular signalling.2 Membrane tubes can be formed
from a patch of membrane by the action of a localised normal
force on the membrane, e.g., from molecular motors such as
myosin or kinesin, or from the formation of a coat of intrinsi-
cally curved proteins on the membrane.3–5

From a statistical mechanics perspective, there already
exists a significant body of work on the thermal fluctuations
of membrane tubes.6,7 A striking prediction from these theories
is that the bending modes of the tube are critical in the long
wavelength limit, meaning that fluctuations are predicted
to diverge at the linear level. Anharmonic terms in the free

energy then control the excess area and associated length
fluctuations.6 These studies have gained contemporary rele-
vance with the development of fluorescence microscopy and
optical tweezers techniques able to infer the power spectral
density of fluctuations on tubes pulled from Giant Unilamelar
Vesicles (GUVs).8 Such studies may also have some relevance
to the statistical mechanics of tubular networks9,10 and on the
length fluctuations of tubes held by a fixed force.11

Work on the dynamics of membrane tubes has focused on
the simplified axisymmetric case, in particular the dynamics
of the pearling instability of membrane tubes,12–15 and the
dynamics of tether pulling from a GUV or cell.16–18 A further
area of study is that of particle lateral mobility within the
membrane.19–21 These examples demonstrate how the curved
geometry of the membrane tube can lead to rich physical
phenomena, in the form of visco-elastic couplings21 and non-
Newtonian rheological behaviour.17,18

Recently there has been an increased interest in quantifying
the dynamics and fluctuations of membrane tubes in a bio-
logical setting1 and in understanding the transport dynamics
of cargo within membrane tubes.2,22,23 Such scenarios are,
in general, driven far from equilibrium by active forces from
cytoskeletal interactions24 or proteins such as proton pumps
changing conformation when consuming ATP.25,26 In order to
have a complete physical understanding of such processes one
needs to develop a theory of active membrane tubes.

In this paper, we will focus on the dynamics of membrane
tubes, deriving equations of motion from Onsager’s variational
principle in the manner of ref. 27–29, and analysing the
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d Sorbonne Université, CNRS, UMR 168, F-75005, Paris, France
e Department of Physics & Centre for Complexity Science, University of Warwick,

Coventry CV4 7AL, UK
f Department of Chemical Engineering, University of Kyoto, Kyoto 615-8510, Japan
g Department of Chemistry, Graduate School of Science, Tokyo Metropolitan

University, Tokyo 192-0397, Japan. E-mail: komura@tmu.ac.jp

Received 15th July 2020,
Accepted 8th August 2020

DOI: 10.1039/d0sm01290d

rsc.li/soft-matter-journal

Soft Matter

PAPER

http://orcid.org/0000-0003-4764-1457
http://orcid.org/0000-0003-4523-3791
http://orcid.org/0000-0003-3422-5745
http://crossmark.crossref.org/dialog/?doi=10.1039/d0sm01290d&domain=pdf&date_stamp=2020-09-08
http://rsc.li/soft-matter-journal


9320 | Soft Matter, 2020, 16, 9319--9330 This journal is©The Royal Society of Chemistry 2020

relaxation dynamics in Fourier space. We then consider the
case where stochastic forces act on the membrane and derive
the statistical properties of the shape undulations, in particular
focusing on the case where active noise dominates. Here the
term active refers to a noise term which breaks detailed balance.
Such active membrane systems have been studied extensively for
the case of flat membranes25,30,31 and spherical vesicles.24,29

These descriptions also have relevance for experiments incorpo-
rating active proteins into GUVs32 and in the analysis of red blood
cell flicker.24,33,34

In Section 2 we derive hydrodynamic equations of motion
for a membrane tube utilising the Osager’s variational principle.
We decompose these equations of motion in Fourier space,
allowing the equations to be reduced to an overdamped equation
for the perturbations in the radial displacement of the tube
surface. The relaxation dynamics of the radial displacement are
discussed in Section 3. The onset of a pearling instability is
discussed in Section 4. In Section 5 we analyse the fluctuations
of membrane tubes due to stochastic forces of two types; the first
corresponding to thermal fluctuations and the second corres-
ponding to a simple form of active noise that breaks detailed
balance. We derive the fluctuation spectra for these ‘‘active’’ tubes
and calculate a wave length-dependent effective temperature of
such fluctuations, to be compared to thermal fluctuations.
Finally in Section 6 we discuss possible ways to quantify the
parameters in our active fluctuations model from experiment,
the relation of our work to previous studies and some
open problems in the study of membrane tubes and active
membranes more generally.

2 Membrane tube dynamics

Here we introduce the geometry required to build our model,
and the notation we will use. We then derive equations of
motion for the relaxation dynamics of the membrane tube in
the linear response regime.

2.1 Geometry

We treat the membrane as a two-dimensional manifold,
M C R3. Vectors in the ambient space will be denoted
-
x A R3 and vectors in the tangent bundle to the manifold as
x A T(M). We parametrise the manifold, M, with the vector
-
r = (r cos y, r sin y,z) where r(y,z,t) = r0[1 + u(y,z,t)], see Fig. 1(a).
We will consider the small deformation limit where u { 1.
Local tangent vectors can be induced on the surface by taking
derivatives with respect to y and z, giving -

ey = qy
-
r and -

ez = qz
-
r,

respectively. A complete triad can be defined by {-ey,
-
ez,

-
n} where

-
n = (-ey �

-
ez)/|

-
ey �

-
ez| is the normal vector to the surface. The

metric and second fundamental (bilinear) forms are then
defined as g = gijdXidX j = -ei�

-ejdXidX j and b = bijdXidX j where
bij = -

n�qj
-
ei and dXi are the coordinate basis of the cotangent

bundle. By raising the indices of the second fundamental form
with the metric and taking the trace and determinant, we
define the mean curvature, H = bi

i/2, and Gaussian curvature,
K = det bi

j.

The membrane is assumed to behave as a fluid in the
tangential direction and we define a vector flow field of the
lipids in the membrane as v A G(T(M)), where G(T(M)) is a
section of the tangent bundle.

2.2 Elastic free energy

The elastic free energy of an incompressible fluid membrane
can be written using the Helfrich–Canham–Willmore energy35–37

Fel ¼
ð
M

dA sþ k
2
ð2HÞ2

h i
; (1)

where s is the surface tension, k the bending rigidity and the area

element is given by dA ¼
ffiffiffiffiffi
jgj

p
dydz. We have integrated out

the contribution from the Gaussian curvature and saddle splay
modulus by assuming no changes in topology and treat the tube
as having infinite length. We also neglect spontaneous curvature
(set it equal to zero), assuming that we are considering a sym-
metric bilayer.

The area element and the mean curvature squared are given,
up to second order, by

dA � r0 1þ uþ 1

2
r0
2@z

2uþ @y2u
� �� �

dydz; (2)

H2 � 1

r02
1

2
� r0

2@z
2uþ @y2uþ uþ 1

2
f2uðr02@z2uþ 3@y

2uÞ
�

� r0
2ð@zuÞ2 þ ðr02@z2uþ @yuÞ2 þ ð@yuÞ2 þ 3u2g

�
:

(3)

If we take the full elastic free energy F ¼Fel � DP
Ð
dV ,

where DP = P� � P+ is the hydrostatic pressure difference across

Fig. 1 (a) Cross section of a membrane tube with time-dependent
undulation of its radial position r = r0[1 + u(y,z,t)] about the equilibrium
radius r0. Here Z+ and Z� are the viscosity of the exterior and interior
ambient fluid, respectively. (b) Surface plots of the Fourier decompositions,

u ¼
P
q;m

uqme
iqzþimy for qr0 = 1.
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the membrane, then the ground state r = r0 must satisfy the
modified Laplace equation

s
r0
� k
2r03
� DP ¼ 0; (4)

in order to minimise the elastic free energy.
For the Onsager’s formulation of membrane dynamics,

we need to know the rate of change of the free energy. This is
given by

�
F ¼

ð
dydz

k
r02

3

2
uþ 1

2
r0
2@z

2uþ r0
4@z

4uþ 5

2
@y

2u

��

þ 2r0
2@y

2@z
2uþ @y4u

�
� s uþ r0

2@z
2uþ @y2u

� ��
r0 _u;

(5)

where a dot (�) indicates a time derivative and we have made use
of eqn (4), or equivalently the constraint that total volume is

preserved
Ð
dydzu ¼ �

Ð
dydzu2=2. Note that

�
F is a functional

only of the normal velocity vn = r0
:
u + O(u2) and not the

tangential components of membrane velocity v. This is also
true for arbitrarily large shape perturbations.38

2.3 Dissipation and constraints

We will consider only the dissipation due to the ambient fluid
as this is the dominant dissipative mechanism at large length-
scales.39 At the scale of cell membranes (10 nm–100 mm),
viscous dissipation dominates the dynamics of the fluid. Hence
we neglect the contribution from inertia and assume zero
Reynolds number.40

We define the velocity in the ambient fluid as
-

V = V a-ea,
where we use Greek indices to denote coordinates in R3, and
summation over repeated indices is assumed. The dissipation
functional for the bulk fluid is given by41

P� ¼
ð
V�

dV�Z�D�abD
ab�; (6)

where Z� is the viscosity and dV� is the volume element of the
exterior (V+) and interior (V�) regions respectively, as shown
in Fig. 1(a). Moreover, D�ab = (raV�b + rbV�a )/2 is the rate-of-
strain tensor where ra is the ambient covariant derivative in
R3.

Our system has several constraints which, in the Onsager’s
formulation, will be imposed using Lagrange multipliers.42

Firstly, the membrane and ambient fluid are incompressible
so must satisfy the following conditions

raV a� = 0, (7)

for the bulk fluid and

riv
i � 2vnH = 0, (8)

for the membrane. Further constrains come in the form of no-
slip and no-permeation boundary conditions on the bulk fluid
at the membrane:�

V a�|r0

�i = vi, V r�|r0
= r0

:
u (9)

where the Latin indices denote the projection of the velocities
in R3 onto the tangent basis of the membrane.

2.4 Rayleighian and equations of motion

To derive the full equations of motion using the Onsager’s
formulation, we must first write down the Rayleighian.27,28,41,43

The full Rayleighian for the system is found by taking the sum
of the rate-of-change of free energy for the system, eqn (5), and
the energy dissipations, eqn (6), and adding in the constraints
on the system using Lagrange multipliers. This formulation is
equivalent to Onsager’s kinetic equation with reciprocal coeffi-
cients, but recast as a variational formalism.43–45

Thus our Rayleighian reads

R ¼PþþP�þ �Fþ
ð
M

dAzðriv
iþ _uÞ�

ð
Vþ

dVþPþraV
aþ

�
ð
V�

dV�P�raV
a�þ

ð
M

dA½mþi ðVaþjr0Þ
i�vi

h i

þm�i ðVa�jr0Þ
i�vi

h i
þlþ Vrþjr0� r0 _u

	 

þl� Vr�jr0� r0 _u

	 
i
;

(10)

where z, P�, m�i and l� are the Lagrange multipliers imposing our
constraints. Note that we choose the sign for P� and z so that they
correspond to pressure and surface tension variation, respectively.

We now proceed to use Onsager’s principle and minimise the
Rayleighian to find the equations of motion for the membrane.42

Taking variations of eqn (10) with respect to V a�|r0
yields

8Z�D�ri|r0
� m�i = 0, (11)

8Z�D�rr|r0
� P� � l� = 0, (12)

showing that m�i and l� correspond to the traction forces acting
on the membrane.

Extremising with respect to vi gives

riz � m+
i � m�i = 0. (13)

By eliminating the Lagrange multipliers, we further have

riz + Z+D+
ri � Z�D�ri = 0, (14)

which is simply tangential force balance on the membrane.
Taking variations with respect to r0

:
u and eliminating l�,

we obtain normal force balance on the membrane

0 ¼ k
r03

3

2
uþ 1

2
r0
2@z

2uþ r0
4@z

4uþ 5

2
@y

2uþ 2r0
2@y

2@z
2uþ @y4u

� �

� s
r0
ðuþ r0

2@z
2uþ @y2uÞ þ

z
r0
� ZþDþrr þ Pþ þ Z�D�rr � P�:

(15)

Varying with respect to z simply gives the membrane incom-
pressibility condition, eqn (8). Varying with respect to V�a and
P� gives the usual Stokes equations and incompressibility
condition, respectively,

Z�r2V a� = raP�, raV a� = 0. (16)

2.5 Fourier mode decomposition

Next we solve the equations for the bulk fluid and calculate the
traction forces on the membrane. Here we make use of the
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known solution to the Stokes equations in cylindrical coordi-
nates given by ref. 40

~V� ¼ rf� þ r� c�~ez
� �

þ r@rrx� þ @zx�~ez; (17)

P� = �2Z�qz
2x�, (18)

where (f�,c�,x�) are scalar functions that each satisfy the Laplace
equation. We decompose these functions in Fourier space in y
and z in terms of the coordinate systems harmonic basis

f�

c�

x�

0
BBB@

1
CCCA ¼

X
q;m

F�qm

C�qm

X�qm

0
BBBB@

1
CCCCAP�qmðrÞeiqzþimy; (19)

with

P�qmðrÞ ¼
PþqmðrÞ ¼ KmðqrÞ;

P�qmðrÞ ¼ ImðqrÞ:

8<
: (20)

In the above, Im(qr) and Km(qr) are modified Bessel functions of
the first and second kind, respectively.

We now introduce the Fourier transform as defined by

f ðy; zÞ ¼
P
q;m

fqme
iqzþimy. The form of surfaces given by the

m-mode perturbations is shown in Fig. 1(b). Applying the
boundary conditions on the bulk flow in Fourier space allows
us to find F�qm, C�qm, and X�qm in terms of the variables :u, vy, and
vz. The boundary conditions in Fourier space read

r0 _uqm

vyqm

vzqm

0
BBB@

1
CCCA

¼

F�qm@rP
�
qmþðim=rÞC�qmP�qmþX�qm@r

2P�qm

ðim=rÞF�qmP�qm�C�qm@rP
�
qmþ imX�qm @rP�qm�P�qm=r

	 


iqF�qmP
�
qmþ irqX�qm @rP�qmþP�qm=r

	 


0
BBBBB@

1
CCCCCA

r¼r0

;

(21)

where the right hand side is evaluated at r = r0. Then we can
make use of the continuity equation to eliminate vyqm =
r0(qvz

qm � i :uqm)/m and find F�qm, C�qm, and X�qm in terms of :uqm

and vz
qm, which are given in Appendix A.

In Fourier space, the components of the tangential force
balance equation read

im

r0
zqm þ Zþ r@rðVyþ

qm=rÞ þ
im

r
Vrþ

qm

� �
r¼r0

� Z� r@rðVy�
qm=rÞ þ

im

r
Vr�

qm

� �
r¼r0
¼ 0;

(22)

iqzqm + Z+�iqV r+
qm + @rV

z+
qm

�
r=r0
� Z�

�
iqV r�

qm + qrV
z�
qm

�
r=r0

= 0
(23)

where the bulk velocity terms can be expressed using F�qm,
C�qm and X�qm, and they are thus just functions of :uqm and vz

qm.
Solving for vz

qm and zqm allows us to write F�qm, C�qm, and X�qm in
terms of :uqm.

Finally, by substituting back into eqn (15), we obtain the
linear response equation for the shape in Fourier space as

B
�

Q,m
� :

uqm = �A
�

Q,m
�

uqm, (24)

where Q = qr0 and

AðQ;mÞ ¼ Q2 þm2
� �2�1

2
Q2 � 5

2
m2 þ 3

2
� S 1�Q2 �m2

� �
; (25)

BðQ;mÞ ¼ r0
3

k
zqm
r0
þ ðPþqm � Z wþ 1ð Þ@rVrþ

qm

�

þ Z 1� wð Þ@rVr�
qm � P�qmÞr¼r0

i
_uqm
� ��1

:

(26)

In the above, we have introduced the notations S = sr0
2/k,

Z = Z+ + Z�, and w = (Z+ � Z�)/Z. The function B(Q,m) is
sometimes referred to as the Fourier transform of the inverse
of the Oseen kernel.46 In the absence of hydrostatic pressure
difference across the tube membrane, i.e., DP = 0, the tube
radius is set by a balance between bending and tension
stresses, and we have S = 1/2.5 Note that zqm, P�qm and
V r,y�

qm are, after solving the tangential force balance equations,
simply proportional to :

uqm. Hence by dividing by :uqm in eqn (26)
we get the friction coefficient at the linear response level.

The exact form of B is in general too complex to write down
except for the m = 0 case for which it is

BðQ;0Þ¼ Zr03

k
ð1þQ2Þ

� 1�wð ÞI12
2QI1I0�Q2 I02� I12ð Þþ

wþ1ð ÞK1
2

2QK1K2�Q2 K1
2�K0

2ð Þ

� �
;

(27)

where all the modified Bessel functions are evaluated at r = r0.
For larger values of m, we evaluate B numerically using
Mathematica (Wolfram Research, Champaign, IL). It is inter-
esting to note that, compared with the spherical case, the m and
Q modes are not constrained by the other as they are in the case
of spherical harmonics.28

We note that the behaviour of B in the limit of Q { 1 can be
computed for the m = 0 mode as

BðQ; 0Þ � Zr03

kQ2
� 2ð1� wÞ þ wþ 1

2 logð2=QÞ � 1� 2g

� �
; (28)

where g E 0.577 is the Euler–Mascheroni constant.

3 Relaxation dynamics

For some initial condition at t = 0, the solution to eqn (24) is
given by uqm(t) = uqm(0) exp[�l(Q,m)t], where l(Q,m) = A(Q,m)/
B(Q,m) describes the rate at which an undulation in the tubes
radius decays back to the ground state. In this section, we
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analyse the form of l to understand the stability and relaxation
dynamics of the Fourier modes in the shape of the
membrane tube.

The decay rates l(Q,m) are plotted as a function of dimen-
sionless wavenumber Q = r0q in Fig. 2 and 3. Throughout, we fix
the total viscosity Z = Z+ + Z� and vary the relative viscosity
w = (Z+ � Z�)/Z. The plots are shown in units associated with the
time-scale of the total viscosity given by t = Zr0

3/k. As the
dynamics remains unchanged on changing the sign of both
m and Q, we will restrict our discussion to m, Q Z 0.

Let us first discuss the m = 0 modes. For the value of S = 1/2,
corresponding to an equilibrium ground state with no net
pressure, the relaxation rate is given by

l0ðQÞ ¼
AðQ; 0Þ
BðQ; 0Þ

¼ Q4 � 1

2
Q2 þ 3

2
� Sð1�Q2Þ

� �

� Zr03ð1þQ2Þ
k

1� wð ÞI12
2QI1I0 �Q2 I02 � I12ð Þ

��

þ wþ 1ð ÞK1
2

2QK1K2 �Q2 K1
2 � K0

2ð Þ

���1
;

(29)

which is positive and the undulations are always stable. The
above expression gives the scaling behaviour l0 B Q2 in the
small Q regime, as shown in Fig. 2(a). As expected in the large Q
limit, the scaling behaviour coincides with that of a flat
membrane where l0 B Q3, and all relative viscosities converge
to a universal relaxation rate. This is a consequence of the
approximate symmetry between the interior and exterior at
such small length scales.

The behaviour of l for m = 1 is evaluated numerically and
shown in Fig. 2(b). For large values of Q, the scaling behaviour
is again like that of a flat membrane for the same reason as the
m = 0 modes. However, at small values of Q, some interesting
phenomena is encountered, which is strongly dependent on the
relative viscosity. As Q - 0, the external dissipation due to
the tube being dragged through the fluid dominates the
relaxation rate.

When |m| = 1, the internal motion simply corresponds to
locally translating the cross section of the tube. In the long
wavelength limit these gradients in velocity become small
and thus the dissipation associated with the interior fluid
decreases. In this long wavelength limit, the tube behaves like
an elastic rod immersed in a viscous fluid in terms of its
relaxation, and tends slowly towards l B �(g + log Q)Q2 as
the interior dissipation becomes less dominant. This scaling
behaviour for a continuous Zimm model of an elastic rod under
tension is discussed in Appendix B.

Notice that the case w = �1 corresponds to Z+ = 0. Hence, in
the long wavelength limit, there is essentially no friction, and
the m = 1 mode relaxation rate diverges as Q - 0. The crossover
between interior to exterior dominant dissipation means that,
in the limit of Z+ { Z�, the relaxation rate can be non-
monotonic in Q. Hence l first decreases and then increases
at intermediate Q before being screened by the exterior viscosity
at long wavelengths, as seen in the case w = �0.95 in Fig. 2(b).

For higher modes of |m| Z 2, the dissipation is dominated
in the long-wavelength regime by the gradients in velocity
coming from the cross-sectional deformations of the tube.
Thus, as Q decreases, the relaxation rate becomes constant,
as shown in Fig. 3. This constant increases with m because each
successive mode costs more bending energy to excite, so will
relax faster. In the high Q limit, the relaxation rate scales like
that of a flat membrane with l B Q3 for all m. We plot the

Fig. 2 Plot of dimensionless decay rate lt as a function of dimensionless
wavenumber Q for the modes uqm when (a) m = 0 and (b) m = 1 for varying
relative viscosity w = (Z+ � Z�)/Z. We keep Z fixed as the rate l has been
non-dimensionalized by the viscous time associated with the total viscosity
t = Zr0

3/k. The dimensionless surface tension is given by S = 1/2 such that
the ground state has no hydrostatic pressure discontinuity.
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|m| Z 2 modes only for w = 0 because changing w does not
noticeably alter the relaxation rates for these modes as the
higher m modes behave like a flat membrane, and hence their
relaxation depends only on the constant total viscosity, Z.

4 Pearling instability

For the m = 0 mode, there is an instability when the tube is
placed under high surface tension.14 The growth rate or
dispersion relation of such an instability is given by the
negative of eqn (29). The threshold for the instability at Q = 0
is given by S = 3/2, which corresponds to the point when A(0,0)
changes sign.12,15

This instability is analogous to the Rayleigh–Plateau
instability in a column of fluid,47,48 where forces arising from
the interface surface tension act to minimise the total interface
area-to-volume ratio, and thus the fluid breaks up into sphe-
rical droplets. Similar forces arise in the case of membrane
tubes although these are counteracted by the presence of
membrane bending rigidity, k. The exact form of this instability
growth rate was found previously in ref. 14, where only axisym-
metric perturbations were considered, and was shown to coin-
cide with earlier works when variations in surface tension were
neglected.12,15,49

For large surface tension S and similar values of viscosity
(wE 0), the wavenumber with the maximum of the growth rate,
argmaxQ{�l0(Q)}, is a monotonic function of S which rapidly
approaches Q E 0.6.14,15 The growth rate, �l0, is plotted in
Fig. 4 for different values of the relative viscosity w. Note that

short wavelength perturbations, Q Z 1, are always stable as the
surface tension terms in A(Q,0) are always positive for Q Z 1.

5 Fluctuations of membrane tubes

We now consider the relaxation dynamics of the tube under
thermal and active fluctuations. This is given by adding
thermal and active forces to eqn (24)

B
�

Q,m
� :

uqm = �A
�

Q,m
�

uqm + xth
qm + xac

qm, (30)

where xth
qm and xac

qm denote the passive (thermal) and active
forces respectively. The statistical properties of the thermal
noise are given in the standard way

hxth
qmðtÞi = 0, (31)

hxthqmðtÞxth�q0m0 ðt 0Þi ¼
2kBT

k
BðQ;mÞdqq0dmm0dðt� t 0Þ; (32)

where kB is Boltzmann constant, T is the temperature and the
star, (*), denotes the complex conjugate.

For the active fluctuations, we write

hxac
qmðtÞi = 0, (33)

hxacqmðtÞxac�q0m0 ðt 0Þi ¼
½FðQ;mÞ�2

2tac
e�jt�t

0 j=tacdqq0dmm0 ; (34)

where tac is the correlation time of the active forces, and the
physics of the active processes will be captured in our choice
of active force density, F(Q,m).30 We will consider only the
simplest case where direct forces acting on the membrane is
constant, i.e., F(Q,m) = F, although more realistic models could
be considered.24,32

Fig. 3 Plot of dimensionless decay rate lt as a function of dimensionless
wavenumber Q for the modes uqm when m = 2, 3, 4, 5. We keep Z fixed as
the rate l has been non-dimensionalized by the viscous time associated
with the total viscosity t = Zr0

3/k. The dimensionless surface tension is
given by S = 1/2 such that the ground state has no hydrostatic pressure
discontinuity.

Fig. 4 Plot of dimensionless growth rate �lt for the pearling instability as
a function of dimensionless Q for varying values of relative viscosity w. We
keep Z fixed as the rate l has been non-dimensionalized by the viscous
time associated with the total viscosity t = Zr0

3/k. The dimensionless
surface tension is set here to S = 100.
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5.1 Thermal fluctuations

First we consider the case when there are no active fluctuations,
i.e., xac

qm = 0. Solving eqn (30) by Fourier transform in time
(assuming any initial conditions have decayed away) yields the
following covariance

huqm tð Þu�q0m0 t 0ð Þith ¼
kBT

kA
e�lðQ;mÞjt�t

0 jdqq0dmm0 : (35)

where th identifies these as thermal (passive) fluctuations. If we
Fourier transform in time with the convention uðtÞ ¼Ð
do=ð2pÞuðoÞeiot we can also find the frequency domain covar-

iance

huqmðoÞu�q0m0 ðo0Þith ¼
2kBTBdqq0dmm0dðo� o0Þ

kðA2 þ B2o2Þ (36)

which we will make use of later.
Then the equal time variance is given by

hjuqmj2ith¼
kBT

k

"
ðQ2þm2Þ2�1

2
Q2�5

2
m2þ3

2
�Sð1�Q2�m2Þ

#�1
;

(37)

in accordance with the equipartition theorem.6 The equal time
covariance is plotted against Q in Fig. 5 for m = 0, 1, 2, 3. Here
the dimensionless surface tension is chosen to be S = 1/2 and
we choose a typical order of magnitude for the bending rigidity,
k/(kBT) = 10.50

A striking prediction is the divergence of the m = �1 modes,
i.e., criticality, with a power-law scaling h|uq1|2ith B Q�2, in the
limit Q - 0. This criticality is due to the m = �1 modes being
one-dimensional Goldstone modes in the long wavelength
limit. In other words, for small Q, they only locally translate
the cross-section of the tube which does not alter the energy of

the tube. The equilibrium properties of such fluctuations, such
as excess area and length fluctuations, are discussed in ref. 6.
Due to the one-dimensional character of these modes, it is
expected that the criticality will be preserved even in the
anharmonic regime.6

5.2 Active fluctuations

Turning our attention to the case of active fluctuations, we will
find the statistical properties of the shape fluctuations due to
purely active noise. We assume that the active and thermal
noise terms are uncorrelated, hence the total shape fluctua-
tions can be found by simply adding the active and passive
contributions.

To find the covariance, we Fourier transform in time to find

huqmðoÞu�q0m0 ðo0Þiac ¼
F2dqq0dmm0dðo� o0Þ
ðA2 þ B2o2Þð1þ tac2o2Þ: (38)

Inverting the Fourier transform for o and o0 gives the covari-
ance in time, which after some algebra gives

huqm tð Þu�q0m0 t 0ð Þiac ¼
F2

2A

Atace�jt�t
0 j=tac � Be�ðA=BÞjt�t

0 j

A2tac2 � B2
dqq0dmm0 :

(39)

Hence the equal time variance becomes

hjuqmj2iac ¼
F2

2AðAtac þ BÞ: (40)

As this quantity depends on the dissipation in the system
through the factor B, it is obvious that the fluctuations are
nonequilibrium. If we assume that the activity correlation time
is an order of magnitude more than the viscous time scale,
tac/t E 10, and that the forces exerted to the membrane is
about 1 pN over an area r0

2, then one can estimate F B 1–10.29

Using these parameters along with w = 0, F2 = 2.5 we plot in
Fig. 6 the active fluctuations given by eqn (40). A peak in the
m = 0 mode is apparent, the position of which depends on the
relative value of the active time-scale tac/t. The decay in active
fluctuations of the m = 0 mode as Q - 0 is due to the viscous
damping that suppresses such non-equilibrium fluctuations.
This does not appear in the thermal case as the thermal force
fluctuation scales like B(Q,m).

The divergence at small Q observed in the m = 1 modes is
retained but with an exponent that differs from the thermal
case according to h|uq1|2iac B Q�2 log Q. It is interesting to
briefly consider the more general case when F is not constant,
and its effect on the critical nature of the m = �1 mode.
In particular if, say by a curvature sensitive coupling, F(Q,m) B
Qn/2 in the small Q limit, then the fluctuations would scale as
h|uq1|2iac B Qn�2 log Q. For example, if the active noise is coupled
to the change in curvature from the ground state of the tube, then
one might expect F(Q,m) B 1/(1 � m2 � Q2), or n = �4
(see Appendix C), which leads to bending mode fluctuations that
scale like h|uq1|2iac B Q�6 log Q.

As the m = �1 mode is the softest on the tube, it dominates
the real space fluctuations and, by Parseval’s Theorem, we have

Fig. 5 Equal time variance for thermal fluctuations as a function of
dimensionless wavenumber Q for modes m = 0, 1, 2, 3. The dimensionless
surface tension is S = 1/2 and the bending rigidity is k/(kBT) = 10.
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hjuðy; zÞj2i � 2
Ð1
2p=Ldq=ð2pÞhjuq1j2i. This implies that by mea-

suring the real space fluctuations of the tube, either through
florescence microscopy or other indirect means,8,51 and then
varying the length of the tube, and thus the cut-off wavelength,
one could infer the long-wavelength form of the active noise.
This experimental assay would provide a simple test of our
predictions and might help to differentiate between different
types of active noise. A similar method has been used to
quantify active noise in neurites.52

Another possible observable is the effective temperature as a
function of Fourier parameters:

Teff Q;mð Þ
T

¼ 1þ hjuqmj
2iac

hjuqmj2ith
: (41)

This quantity is plotted in Fig. 7 for the same parameters of
F2 = 2.5, tac/t = 10, w = 0, k/(kBT) = 10 and S = 1/2. The plot shows
that, for long tubes, the highest effective temperature is found
in the m = 1 modes and that these are likely to dominate the
spectrum.

Measuring the temperature of fluctuations of long tubes, for
example those pulled from GUVs,8 and varying the viscosity of
the exterior fluid may provide a way to quantify the magnitude
and time constant of such active correlations in experiment.
Fig. 8 shows the effective temperature of the m = �1 modes
for varying relative viscosity w, along with the asymptotic
result predicted using a Zimm model for such modes (see
Appendix B). As the m = �1 modes dominate much of the
fluctuation spectrum, and given the small size of most tubes
formed in real membrane systems, it might prove difficult to
resolve the other modes directly. Hence the m = �1 modes are
probably the best candidate for such a direct measurement
with varying viscosities.

Finally, we compute the Power Spectral Density (PSD) for the
active and thermal cases from the frequency domain correla-
tion functions, h|uqm(o)|2ith,ac, given by eqn (36) and (38). The
PSD is given by

PSDth;acðoÞ ¼ 2
X

Q4Qmin ;m	0
hjuqmðoÞj2ith;ac (42)

where the factor of 2 comes from counting negative q and m
modes, and Qmin is the cutoff set by the length of the tube.
We plot the PSD in Fig. 9 for the same parameters as before and
using discrete values of Q = 2pnr0/L to perform the summation
where we choose n A [1,50], m A [0,3] and the tube length
L = 100r0.

The combined PSD, PSDth(o) + PSDac(o), displays three
regimes; a plateau at small o mostly dominated by active noise,
a transitional region governed by the active noise which scales
like PSD(o) B o�4, and finally a high frequency regime
dominated by the thermal behaviour. This final regime scales in
a similar way to that for a flat membrane, PSD(o) B o�5/3.53,54

Crucially, the low frequency regime, which is the only region that
can be probed by current experimental techniques, shows a
dramatic difference between the passive and active cases.
This could be measured directly using current experimental
methods,8,55 using an ATP-depleated system as a reference for
the passive thermal case. A similar technique has been used to
analyse the active ‘‘flicker’’ of red blood cells,34 and could provide a
direct way of quantifying active behaviour in membrane tubes.
Varying the external viscosity could also provide an additional
probe of the form of the active forcing.

Fig. 6 Equal time variance for active fluctuations of the membrane tube
as a function of dimensionless wavenumber Q for modes m = 0, 1, 2, 3.
The dimensionless parameters are S = 1/2, w = 0, F2 = 2.5 and tac/t = 10.

Fig. 7 Effective temperature of the membrane tube with both thermal
and active fluctuations, eqn (41), plotted as a function of dimensionless
wavenumber Q for modes m = 0, 1, 2, 3. The dimensionless parameters are
S = 1/2, k/(kBT) = 10, w = 0, F2 = 2.5, and tac/t = 10.
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6 Summary and discussion

In this paper, we have investigated the passive and active
dynamics of a fluid membrane tubes. Using Onsager’s varia-
tional formalism, we have calculated the full relaxation
dynamics for the Fourier modes in the shape of the membrane

tube, assuming a small deformation limit. This work accounts
for variations in surface tension through the use of the
Lagrange multiplier, z, imposing local incompressibility, pre-
viously only considered in the axis-symmetric case.14 We also
consider the viscosity contrast between the interior and exterior
ambient fluid.

The scaling behaviour of the relaxation modes is analysed
and characterised in both the long and short wavelength limits.
In the short wavelength limit, we recover the scaling behaviour
of a flat membrane for all angular modes. More interesting
behaviour is found in the long wavelength limit, particularly in
the case of the bending modes (m = �1), where we find a
relaxation rate that scales like that of the normal modes of an
elastic rod in a viscous fluid. We also reproduce the pearling
instability growth rate found by Boedec et al.,14 which is
recovered when we set m = 0 and choose a sufficiently high
value of the surface tension (S 4 3/2). These relaxation
dynamics are significantly different from those found for flat
membranes27,39 or for spherical vesicles.28 In the case of the
spherical vesicles, the system can be written purely in terms of
one Fourier mode due to the coupling imposed by spherical
symmetry. This does not happen in the case of the tube as Q
and m are independent of one another.

We then make use of these relaxation equations to compute
the fluctuation spectra for passive thermal fluctuations and a
simple minimal model of active fluctuations.29,30 The active
noise breaks the fluctuation dissipation theorem, as is apparent
in the presence of dissipative terms in the mean square fluctua-
tions, see eqn (40). The active noise for a ‘‘direct force’’ term also
shows a modified critical behaviour of the bending modes
(m = �1) in the long-wavelength limit found in thermal
fluctuations.6 It is likely that more complex curvature couplings
in the long-wavelength limit could also modify the critical
exponent. We have proposed a possible experimental assay based
on measuring the real space fluctuations of the tube and varying
its length. This could be used to infer the functional form of
the active noise experimentally in both in vivo and in vitro
systems.1,8,51 We also compute the effective temperature of the
system with both thermal and active fluctuations and show that,
for long tubes, the clearest signature of the active noise is in the
bending modes. This should be a measurable prediction with
current experimental setups, e.g., using a similar approach used
by Valentino et al.8 and changing the external viscosity.

Finally we compute the power spectral density for thermal,
active and combined fluctuations of membrane tubes, a quantity
that is directly measurable with current experimental setups
using optical tweezers,8,55 and show that the active fluctuations
dominate the measurable low frequency regime. This could be
used to directly infer information about the size of forces and
activity time scales for different sources of activity. It could also
be interesting to consider the effect of different forms of the
active force, F(Q,m), particularly in the case where this includes a
length-scale associated to curvature coupling (as might be the
case with proteins changing conformation).

In this work we have assumed that the bilayer is symmetric,
such that there is no spontaneous curvature term in the

Fig. 8 Effective temperature of the membrane tube with both thermal
and active fluctuations, eqn (41), plotted as a function of dimensionless
wavenumber Q for modes m = 1 for different values of relative viscosity w.
The dimensionless parameters are S = 1/2, k/(kBT) = 10, F2 = 2.5, and
tac/t = 10. The dotted line shows the asymptotic approximation obtained
by using a Zimm model for a rod in a viscous fluid.

Fig. 9 The power spectral density, PSD(o), plotted against frequency, o,
in the thermal, active and combined cases. The dimensionless parameters
are S = 1/2, k/(kBT) = 10, w = 0, F2 = 2.5, and tac/t = 10. We choose a tube of
length L = 100r0.
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Helfrich–Canham energy. However if the tubes were formed by
a coat of proteins with preferred curvature (BAR-domain pro-
teins, for example), then an additional spontaneous curvature
term would appear in the elastic free energy.56,57 This is known
to have an effect on the relaxation rates and criterion for the
pearling instability.58

More complex boundary conditions allowing for slip and
permeation of the membrane with the ambient fluid could also
be considered by adding the corresponding dissipative terms to
the Rayleighian.32,59 These effects would be most relevant at
very short wavelengths and thus only modify the high (Q,m)
part of the relaxation rates and fluctuation spectra.59 Permea-
tion may also play a role for the m = 0 mode at very long
wavelengths and thus be important in tubes undergoing
volume changes, by osmotic swelling for example ref. 26. It is
also possible that in some scenarios the membrane may allow
slip freely but support no shear stress across the membrane. In
this case a change in boundary condition from no-slip to no-
shear-stress would need to be considered.46

Perhaps the most pressing open question in the field of
active membranes is what functional form is best used to
represent the active fluctuations and if all current descriptions
can be unified in some manner. The simple model of a direct
force used in this paper has been used successfully throughout
the literature to describe real systems.29–31,34 However, it is not
clear how well motivated this is at the microscopic level. The
model we have used involves the assumption that the work
done by the active forces per unit time is constant, although
another possible coarse-grained model might assume constant
applied force.30 More complex models of activity have been
proposed for specific situations, for example using dipole
forces and allowing fluid permeation of the membrane.32

However, a general framework is lacking and the effect on
observable phenomena is not yet well understood.

For future work, it would be interesting to consider the
effects of different formulations of activity, both in tubes and
other geometries. An example might be active pumps that
transport ions across the membrane, and thus increasing
the tube’s osmotic pressure.26 A further study could focus on
coupling the active fluctuations to a field associated with the
density of some spontaneous curvature-inducing proteins
on the membrane. This has already been studied for a flat
membrane in ref. 25 where a curvature induced instability was
shown to arise. The interplay between this instability and the
highly curved geometry of a membrane tube could be quite
rich. It may also be of interest to consider the effect of a
viscoelastic ambient fluid, as this may give a better approxi-
mation to the cytoplasm in cells. Not only would this give
potentially richer dynamics, due to the presence of an addi-
tional time scale, but it could also be useful in understanding
more realistic biological processes.1,2,60
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A Expressions for U�qm, W�qm, N�qm

Here we give expressions for the scalar Laplace function
decompositions for the Stokes equations after imposing the
boundary condition, eqn (21), and making use of the continuity
equation to eliminate vyqm. This gives

Fþqm ¼2r0

h
Q 4ivzqm�3Qr0 _uqm

	 

Km�1

2�4m Qr0 _uqm�2ivzqm
	

ÞKm�1Km

þ 4 r0 _uqmþ ivzqm
	 


Km
2�Q2r0 _uqmKmþ1

2
i
�
h
7Q3Km�1

3

þ 2 9m�8ð ÞQ2Km�1
2Kmþ4Q m m�8ð Þ�2Q2

� �
Km�1Km

2

� 8m m2þQ2
� �

Km
3þQ3Kmþ1

3
i�1

;

(43)

Cþqm ¼r0
h
�8Km

2 vzqm m4þ2ðmþ1ÞmQ2þQ4
� �	

� iQr0 _uqm mð3mþ2ÞþQ2
� ��

þ 8QKm�1Km m3þðm�2ÞQ2
� �

vzqm�iðm�2ÞQr0 _uqm

	 


þ 2Q2 3Km�1
2þKmþ1

2
� �

m2þQ2
� �

vzqm�iQr0 _uqm

	 
i

�
h
mQð8 m3þmQ2

� �
Km

3�7Q3Km�1
3�Q3Kmþ1

3

þ2ð8�9mÞQ2KmKm�1
2þ4Q 2Q2�ðm�8Þm

� �
Km

2Km�1Þ
i�1

;

(44)

Xþqm ¼r0
h
�8iKm

2 vzqm m2þQ2
� �

�iðmþ1ÞQr0 _uqm

	 

þ 6iQ2Km�1

2þ2iQ2Kmþ1
2

� �
vzqm�8QKmKm�1

� Qr0
2 _uqm�imvzqm

	 
i

�
h
Qð�8 m3þmQ2

� �
Km

3þ7Q3Km�1
3þQ3Kmþ1

3

þ 2ð9m�8ÞQ2KmKm�1
2þ4Q ðm�8Þm�2Q2

� �
Km

2Km�1Þ
i�1

;

(45)

F�qm ¼r0 Im
2 m2�1
� �

r0 _uqm�iQvzqm

	 

þQIm�1

2 Qr0@uqm�ivzqm
	 
h

�2mImIm�1 Qr0 _uqm�ivzqm
	 
i

�
h
QðQ2Im�1

3þmQIm
3

þ 2ðm�2Þm�Q2
� �

Im
2Im�1þð2�3mÞQImIm�1

2Þ
i�1

;

(46)

C�qm ¼r0 �2ImIm�1 m3vzqmþðm�1ÞQ2vzqm�iðm�1ÞQr0 _uqm

	 
h

þQIm�1
2 m2þQ2
� �

vzqm�Qir0 _uqmÞ
	 


þ iIm
2 r0 _uqm 2mðmþ1ÞþQ2

� �
þiQvzqm mðmþ2ÞþQ2
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i
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2þmQIm
3Þ
��1

;

(47)
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X�qm ¼r0 ImIm�1 �Qr0
2 _uqmþ2imvzqm

	 

þIm2 mþ1ð Þr0 _uqmþiQvzqm

	 
h

� iQvzqmIm�1
2
i
�
h
QðQ2Im�1

3þð2ðm�2Þm�Q2ÞIm2Im�1

þð2�3mÞQImIm�1
2þmQIm

3Þ
i�1

;

(48)

where the modified Bessel functions Km and are evaluated
at r = r0.

B Relaxation dynamics of linear Zimm
model

Here we consider the relaxation dynamics of small planar
normal perturbations to a thin elastic rod whose position is
given by

-
r =
�

xðtÞcos qz,0,z
�
, (49)

and has geodesic curvature kg = �q2x cos qz. We are motivated
to study the relaxation dynamics of this system as, on length
scales much larger than the tube radius, the m = 1 mode of a
membrane tube can likely be thought of as the dynamics of a
thin elastic rod. Here membrane flows are small and most of
the friction comes from the drag of the tube through the bulk
fluid. We want to see if, at least at a scaling level, this can give a
simple understanding of the long wavelength relaxation
dynamics.

If we assume qx(t) { 1, the elastic force per unit length on
the rod is given by

~f ¼ �Kr2kg þ Skg; 0; 0
� �

¼ �Kq4x cos qz� Sq2x cos qz; 0; 0
� �

;

(50)

where K is the bending rigidity of the rod and S is the tension.61

We can write the dynamics of this rod as a continuous
Zimm model

_~r ¼ �
ð
d~sL ~r�~sð Þ~f ~sð Þ; (51)

where L(-r � -
r0) is the Oseen tensor62

L ~r�~sð Þ ¼ 1

8pZj~r�~sj I� ~r�~sð Þ 
 ~r�~sð Þ
j~r�~sj2

� �
: (52)

Here # is the tensor product and I ¼ dab~ea 
~eb.
At linear order and in the long-wavelength limit, this gives

_x � ðKq
4 þ Sq2ÞCiðqr0Þ

4pZ
x; (53)

where Ci qr0ð Þ ¼ �
Ð1
r0
dx cosðqxÞ=x is the cosine integral func-

tion, and we have chosen a short-wavelength cutoff of the rod
radius, r0. Then we obtain a relaxation rate that scales as
l B �(g + log Q)Q2 in the small Q limit, where g is the Euler–
Mascheroni constant. This result agrees, at the scaling level,
with relaxation dynamics of a membrane tubes bending mode
in the long wavelength limit. It also gives the correct scaling for

the effective temperature of fluctuations in the long wavelength
limit, dotted line in Fig. 8.

C Possible direct curvature coupling

Here we briefly outline a possible scheme to give active fluctua-
tions with direct curvature coupling. If instead of writing the
shape equation in terms of the local deviation from the
equilibrium radius, r0, we write it as a local deviation from
the equilibrium mean curvature, H = 1/(2r0). The we can write
an equation of the form

d
:

HqmB
�

Q,m
�

= �A
�

Q,m
�
dHqm + xac,H

qm (54)

where dH = (1 � m2 � Q2)uqm and xac,H
qm gives the active direct

curvature coupling noise with the following statistical
properties

hxac,H
qm ðtÞi = 0 (55)

hxac;Hqm ðtÞx
ac;H�
q0m0 ðt

0Þi ¼ f 2

2tac
e�jt�t

0 j=tacdqq0dmm0 ; (56)

where f is a constant. In the shape equation for uqm, eqn (30),
this corresponds to F(Q,m) = f/(1 � m2 � Q2) which is discussed
briefly in the main text.
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4 D. Cuvelier, I. Derényi, P. Bassereau and P. Nassoy, Biophys. J.,
2005, 88, 2714.
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P. Veranič and A. Iglič, J. Biomech., 2012, 45(2), 231.
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