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The efficient transport of membrane proteins is vital in maintaining life. In this work, we investigate the transport
of such membrane proteins along long thin membrane tubes or tethers. We calculate the diffusion constant to leading
order in the low Reynolds number regime to beD ) (4πη)-1 log(r/a), with r anda being the tube and protein radii,
respectively, andη being the membrane viscosity. Thus we propose an exact limiting form for the controversial
logarithmic correction, such as originally introduced by Saffman and Delbruck, that involves the tube radius rather
than some “frame size”. Our work suggests a test of this logarithmic correction could be achieved by measuring
diffusion on membrane tubes, exploiting the fact that the equilibrium tube radius can be controlled by the membrane
tension and varied over several orders of magnitude. We analyze the time taken for a protein to transit a membrane
tube between cells and find that this can vary by an order of magnitude over physiological tensions. This is a strong
effect in biological terms and suggests a possible regulatory coupling between membrane tension and signaling.

Introduction

Our theoretical study of the motion of membrane proteins
addresses a long outstanding controversy about their diffusion.
This can be traced to Saffman and Delbruck’s seminal paper on
protein diffusion on flat membranes.1 It was here that these authors
first predicted a logarithmic dependence of the protein diffusion
constant on the ratio of the size of the protein to the size of the
membrane, a result of great relevance to membrane biophysics.
This dependence still remains the subject of intense scientific
interest and controversy since it has proved extremely difficult
to verify. Indeed, Urbach and co-workers2 recently presented
evidence that calls this logarithmic dependence into question.
Our work achieves two important goals. First, it analyzes a new
way of verifying this logarithmic dependence. This does not
involve measuring the diffusion of proteins of different sizes,2

but rather involves changing the “size” of the membrane. This
could now be achieved by controlling the force on a tubular
membrane tether held in place by a laser tweezer focused on a
conjugated bead. By controlling the membrane surface tension,
one controls the tube radius, which we show to be the relevant
“membrane size”. Our calculations are directed at this new
membrane geometry, that of long slender membrane tubes. A
physiologically relevant and experimentally accessible range of
membrane tensions gives rise to a huge change in the tube radius
(perhaps approaching 2 orders of magnitude). In turn, this leaves
a clear signal in the measurable diffusion constant of membrane
proteins, which we suggest could be made to vary by about an
order of magnitude. In this magnitude, we show how measure-
ments of diffusion constants, for example, by FRAP, at various
tether forces could provide a test of Saffman and Delbruck’s
predictions.

The formation of membrane tubes has received much recent
interest.3-13 These tubes can arise in biology due to the

polymerization of actin fibers14 or microtubules,15 which may
be coupled to molecular motor proteins.14,15 Such tubular
structures appear on or within cell membranes and neuronal
growth cones,14-16as well as on vesicles observed in vitro.11,17-24

Biological membranes that exist in the endoplasmic reticulum
(ER) and the Golgi apparatus can also form complex and highly
dynamical tubular structures.25-33 Indeed, it has recently been
reported experimentally34that long membrane tubes are involved
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in transport between membrane compartments such as the Golgi
and ER, or between the plasma membranes of nearby cells.35,59

It is thus important that we understand the mobility of small
proteins that are free to diffuse on such tubular membrane
networks. As we have stated, such tubular membrane geometries
can be recreated in a highly controlled fashion by pulling a
membrane-tethered bead from the surface of a cell or vesicle,
for example, using a laser trap. In this way the axial force exerted
by such membrane tethers can be measured, and this can be used
to extract the membrane tension.3,12

Protein diffusion onflat biomembranes has been extensively
studied experimentally in various biological contexts (see, e.g.,
refs 2 and 36-40). The theoretical approach to this problem has
involved calculating the diffusion constant for a small protein
on a large flat membrane, and various results already exist.1,41-46

These share the feature of a logarithmic correction to the diffusion
constant which, as discussed above, is difficult to test and
somewhat experimentally controversial.2 For the sake of com-
pleteness, we re-derive this result in the appendix via the theory
outlined below, where we also discuss diffusion on a large
spherical membrane. Throughout the present work we neglect
the effect of flows in any surrounding fluid,2,47 as we discuss
further in the Conclusion.

In what follows, we aim to calculate the diffusion constant of
a small protein on a long thin cylindrical membrane tube or
tether. Our motivation is twofold: (1) to quantify the rate of
transport of membrane proteins within and between cells and (2)
to analyze a model geometry that may allow for a more rigorous
test of the proposed logarithmic correction to the diffusion
constant. This would be achieved by variation of the tube radius
over several orders of magnitude through the controlled variation
of either the membrane tensionσ, or, equivalently, the axial
“tether” forcefL required to hold the tube at constant lengthL,48

which will be discussed further below. The membrane rigidity
κ is usually assumed to remain constant. Additional contemporary
interest in these problems is reflected in refs 13 and 20, for
example.

Theory

We now proceed to calculate the diffusion constant of a small
protein diffusing on a cell membrane tether or tube, via
consideration of its low Reynolds number hydrodynamics.49-52

We approximate the flow fieldu around a protein by that of a
Stokeslet,49-53 the flow due to a unit point forcef at the protein’s

location.Whileother,morecomplicated theoretical hydrodynamic
approaches exist in the literature49-52 with their concomitantly
much more difficult to implement boundary conditions, our use
of Stokeslets should yield an accurate description on scales greater
than the protein size∼a, which we assume to be the case in what
follows. The resulting linear relationship between the particle
(Stokeslet) velocityu0 and forcef will be used to obtain the
diffusion constant as usual.49-53 The hydrodynamic equations
governing incompressible, low Reynolds number Stokes flow
are

whereη characterizes the membrane viscosity, having units of
viscosity multiplied by length (membrane thickness).

Using the incompressibility constraint,∇‚u ) 0, we can
eliminate the pressurep(x) (with units of surface pressure) from
eq 1 via-∇2p+ ∇‚fδ2(x) ) 0. That is, at each pointx, we choose
a p(x) such that fluid incompressibility is satisfied. This leads
to the following solution for the flow field, which possesses the
characteristic and well-known Oseen tensorial structure:49-52

In eq 2 we have introduced the useful Green functionG(x - x′)
which satisfies the relation-∇2G(x - x′) ) δ2(x - x′).54 In
addition, at the protein’s location,x ) 0 (no boundary “finite
size” shape effects), we must satisfy the appropriate boundary
conditionu(0) ) u0, whereu0 is the velocity of the protein. In
this short-distance limit, as we approach the protein’s location
(x f 0), we can use the well-known result54 that-∇R∇âG(x -
x′) ≈ 1/2δ â

Rδ2(x - x′) as (x - x′) f 0. By utilizing the
aforementioned properties of the Green functionG(x - x′), and
via careful inspection of eq 2, we can therefore see that all we
require to complete our calculation is thex f 0 limit of G(x).
This allows us to write directly from eq 2, using the well-known
relation f ) úu0,

using the limitx f 0 at the protein’s location. Here,D is the
protein’s diffusion constant, andú is its coefficient of friction.
Typically, however, the Green functionG(x) diverges asx f 0,
so that we need to introduce a “cutoff”,a, in order to give the
protein a finite size. Note, therefore, that this simple result is
valid as long as the size of the protein is small compared with
the size of the membrane, which typically holds under physi-
ological conditions.15Given this simplifying limit, and using the
result obtained in eq 3, we can see that, with perfect generality,
we can establish the protein diffusion constant (in whatever
membrane geometry we choose) by investigating the short-
distance properties of the Green functionG(x - x′), as defined
above.
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Membrane Tubes

In a cylindrical geometry corresponding to a tube of length
L and radiusr, the Green function is given,54 in terms of Fourier
variables, by

whereq ) qzẑ + qφφ̂, qz ) 2πn/L, andqφ ) m/r. The Green
function in eq 4 is given such that the flow fieldu dissipates for
large separation in∆z while also respecting the necessary
periodicity in∆φ. Focusing on the biologically relevant case of
long and thin membrane tethers, we can investigate, precisely
as outlined above, the required short-distance limitG(∆x)|∆xf0

of eq 4, in the long-length limit also ofL f ∞. This can be simply
achieved by converting the sum overn into an integral. Then
using the result of eq 3 from above, we thus obtain the diffusion
constant as

This gives the leading order logarithmic behavior in the limitr/a
. 1. In calculating eq 5, we have assumed that the protein shape
(or size) is given implicitly by∆z ) a andr∆φ ) a. Changing
the shape of the protein merely alters the order unity contribution
in eq 5, and is therefore a subleading effect in the limit
r/a. 1 of interest to us here. Heuristically, we can also understand,
if we so wish, the logarithmic behavior of the diffusion constant
with respect to membrane tube radius as arising due to the
necessity of introducing a low-wavelength (long-distance) cutoff
into the sum over all modesm, as arises in eq 5 for example.

Protein Diffusion on Membrane Tethers.It is well-known
that, for a membrane tube (or tether) with surface tensionσ and
bending modulusκ, its equilibrium radius is given byr )
xκ/2σ,3 and the force required in order to maintain its
equilibrium lengthL is given by fL ) 2πx2κσ.3 Using these
results in eq 5, we obtain the following result for a surface protein
diffusing along the length of a membrane tether (in the limit
L/r . 1):

Figure 1 shows that, as the surface tensionσ decreases, and
therefore the radius of the membrane tetherr ) xκ/2σ increases,
the mobility of the diffusing surface protein increases. The total
variation of σ shown in the figure is on the order of the
physiological range, andin Vitro experiments should allow the
exploration of even larger regimes ofσ. Additionally, utilizing
the scaling relationshipL2 ) 2Dτ for one-dimensional diffusion,
and our previous result for the diffusion constantD, we can find
a characteristic time for a surface protein to diffuse along a
membrane tether of lengthL (in the limit L/r . 1):

The variation ofτ with σ follows from τ ∼ 1/D. The relation
j ) -D∂c/∂z≈ D∆c/L for the flux on a unit sheet per unit length
per time must be combined with the tube circumference (the
relevant unit length) to obtain the steady-state flux of proteins
per second along the surface of a biological tether (in the quasi-
equilibrium limit):

where∆c is the protein concentration difference between the
ends of the cell membrane tether. In contrast to the transit time
τ, the fluxJ depends on a power ofσ. In practice, it is therefore
relatively insensitive to the logarithmic variation of the particle
mobility with σ.

Comparison with Experiment.For a typical membrane tether,
we haveκ ≈ 10-19 J3,12,14andσ ≈ 10-4 J m-2,3,12,14,55such that
r ≈ 20 nm andfL ∼ 10 - 100 pN. Typical membrane tether
lengths might be a few microns, while a typical plasma membrane
has a viscosity ofη ≈ 5 × 10-9 J m-2 s.56,57 A typical protein
hasa ≈ 5 nm, such that 2πr/a . 1 is satisfied, validating the
approximate theoretical approach used in this work, as outlined
above. Inserting the appropriate values into eq 5, we find
D ≈ 10-13 m2 s-1 for proteins diffusing on a membrane tether,
which is experimentally reasonable.14,15,59-61 Additionally, by
inserting the appropriate values into eq 7, we find thatτ ∼ 10-3

- 103 s forL ∼ 10 nm- 10µm, respectively. This is consistent
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Figure 1. Plot of the diffusion constantD (in units ofµm2 s-1) for
a protein diffusing along the surface of a membrane tether as a
function of the membrane surface tensionσ (in units of J m-2). The
absolute value ofD depends on the precise values ofη anda used
(in our case,η ≈ 5× 10-9 J m-2 s anda≈ 5 nm). The large variation
in D accessible, through changes in membrane tension, is a key
predicition of the work presented here.
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with timescales for passive biological transport,2,36-40 while
transport via “active” motors is also known to exist.14,15

Furthermore, we can quantitatively calculate the effect of
varying the membrane surface tensionσ on the mobility of a
surface protein diffusing along the length of a membrane tether.
Biologically, membrane tethers may be expected with surface
tensions in the range ofσ ≈ 10-2 - 10-5 J m-2.3,14 Thus the
highest surface tensions that membranes can support are on the
order of 10-2 J m-2 and correspond to very small tether radii,
where the approximationr . a may be starting to break down.
Conversely, we see from Figure 1 that, for the lowest tensions,
on the order of 10-5 J m-2, we haveD ∼ 10-1 µm2/s. While the
precise value depends on the size of the diffusing particle (protein)
and the membrane viscosity, we can say that the diffusion
constants at these extreme tensions differ by an order of magnitude
(see Figure 1). From a biological perspective, this is a rather
large effect. Moreover, it follows that a similar order of magnitude
variation also exists for the timeτ taken for such a particle to
diffuse along a membrane tether.

Conclusion

We have calculated the diffusion constant of a small protein
diffusing on a cell membrane tether or tube, via consideration
of its Stokes flow and low Reynolds number hydrodynamics.49-52

An exact form for the protein diffusion constant was found to
depend logarithmically on the membrane surface tension or the
applied axial tether force. In this work, we have used the well-
known method of the Stokeslet49-53 in order to model the flow
around a small protein by treating it as arising from a point force
at the same location. This approach gives the leading order
variation of the protein coefficient of friction and is insensitive
to the shape of the protein when the protein is small compared
to the size of the membrane, as will usually be satisfied under
typical physiological conditions.1,14,52

Our work is significant in that it suggests and quantifies a way
of probing the controversial logarithmic variation of the diffusion
constant with a characteristic membrane size, here identically
the tube radius. Furthermore, our work has biological significance,
given the interest in tubular structures within and connections
between cells. It is interesting to speculate whether there exists
a regulatory relationship between membrane tension and the
exchange of cellular information along long thin membrane tubes
or tethers in living cells.

Note that we do not discuss bulk dissipation in this work.2,47,61

Rather, we study surface friction alone in order to propose a new
test of Saffman and Delbruck’s original theoretical predictions.1

Moreover, bulk dissipation should be small for tube radii smaller
than rc ) a ηmemb/ηsolvent, wherea ) 5 nm is the membrane
thickness, and the viscosity ratio is perhapsηmemb/ηsolvent) 100.47

This suggests that bulk dissipation can be neglected for surface
tensions down to 10-7N/m, as is appropriate to the work presented
here.47

Furthermore, we would like to point out that our result has a
rather unique quality. To understand this simply, note that Saffman
and Delbruck1 originally introduced a large length scale
logarithmic cutoff length for convenience. There is no real “frame

size” for typical planar membranes, whereas, in our study, the
membrane tube radius is (identically) this relevant length.
Moreover, we see the main impact of our paper being that it
provides a tool for testing Saffman and Delbruck’s original
predictions,1 rather than simply providing new theoretical results.

Also note that the next order correction for the diffusion
constant beyond the leading order inr/a logarithmic terms is
non-universal, depending on the shape of the protein and, for
example, whether it matches the curved shape of the tube for all
tube radii. We choose to ignore such non-dominant, finite-size
shape effects in this work, as they add little in the context of our
study and would also probably be of limited general interest.

The work was supported by NIH Grant No. HL 58512 from
the National Heart Lung and Blood Institute.

Appendix

Flat Membranes.Although the result for the diffusion constant
of a protein (of sizea) on a flat membrane (of large radiusR)
is well-known,1,41-46 we briefly reproduce it here (in the limit
R/a . 1) for the sake of completeness. For the flat membrane
case, we find (using a Fourier representation of the Green function
for convenience)

such that, by using eq 3, the protein diffusion constant on a flat
membrane is given byD ) kBT/4πη ln(R/a). Reassuringly, this
result agrees with that found in the literature1 (for zero tangential
stress), in the same limit of interest, namely,R/a . 1. Using the
identityR2 ) 2Dτ, valid for one-dimensional diffusion, and our
result for the diffusion constantD, we can also find the time
taken for a protein to diffuse across a patch of flat membrane
of sizeR: τ ) 2πηR2/kBT ln(R/a).

Membrane Spheres.For completeness, we also consider
protein diffusion on spherical biological membranes. The
appropriate Green function on a sphere is well-known54,58 and
is given by

In the short-distance limit, valid for small proteins, we must
haveθ - θ′ ≈ (φ - φ′) sin θ ≈ a/F, wherea is the size of the
protein andF is the radius of the sphere. Using eq 3, we therefore
find that the diffusion coefficient for a small protein on a large
membrane sphere is given byD ) kBT/4πη ln(F/a), in the limit
F/a . 1. Using the identityF2 ) 2Dτ, valid for one-dimensional
diffusion, and our result for the diffusion constantD, we find
the time taken for a protein to traverse a membrane sphere of
radiusF via diffusion to beτ ) 2πηF2/kBT ln(F/a) to leading
order ina/F.

LA0635000

G(∆x)|∆xf0 ) 1
2π ∫0

∞ dq
q
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) 1
2π

ln(R/a) (9)

G(θ,φ; θ′,φ′) )

- 1
4π
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