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The efficient transport of membrane proteins is vital in maintaining life. In this work, we investigate the transport
of such membrane proteins along long thin membrane tubes or tethers. We calculate the diffusion constant to leading
order in the low Reynolds number regime toDe= (47) 1 log(r/a), with r anda being the tube and protein radii,
respectively, andy being the membrane viscosity. Thus we propose an exact limiting form for the controversial
logarithmic correction, such as originally introduced by Saffman and Delbruck, that involves the tube radius rather
than some “frame size”. Our work suggests a test of this logarithmic correction could be achieved by measuring
diffusion on membrane tubes, exploiting the fact that the equilibrium tube radius can be controlled by the membrane
tension and varied over several orders of magnitude. We analyze the time taken for a protein to transit a membrane
tube between cells and find that this can vary by an order of magnitude over physiological tensions. This is a strong
effect in biological terms and suggests a possible regulatory coupling between membrane tension and signaling.

Introduction polymerization of actin fibef¢ or microtubules® which may
be coupled to molecular motor proteitfs’® Such tubular
structures appear on or within cell membranes and neuronal
growth coned#1%aswell as on vesicles observed in vittd. 24
Biological membranes that exist in the endoplasmic reticulum
(ER) and the Golgi apparatus can also form complex and highly

Our theoretical study of the motion of membrane proteins
addresses a long outstanding controversy about their diffusion.
This can be traced to Saffman and Delbruck’s seminal paper on
protein diffusion on flat membranést was here that these authors

first predicted a logarithmic dependence of the protein diffusion . .
P g P P dynamical tubular structure§-33 Indeed, it has recently been

constant on the ratio of the size of the protein to the size of the ; .
membrane, a result of great relevance to membrane biophysics.mpOrtEd experimentaftjthat long membrane tubes are involved
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in transport between membrane compartments such as the Golgiocation. While other, more complicated theoretical hydrodynamic
and ER, or between the plasma membranes of nearby3élls.  approaches exist in the literatd?e® with their concomitantly

It is thus important that we understand the mobility of small much more difficult to implement boundary conditions, our use
proteins that are free to diffuse on such tubular membrane of Stokeslets should yield an accurate description on scales greater
networks. As we have stated, such tubular membrane geometrieshan the protein size-a, which we assume to be the case in what
can be recreated in a highly controlled fashion by pulling a follows. The resulting linear relationship between the particle

membrane-tethered bead from the surface of a cell or vesicle,(Stokeslet) velocityug and forcef will be used to obtain the
for example, using a laser trap. In this way the axial force exerted diffusion constant as usu#-53 The hydrodynamic equations
by such membrane tethers can be measured, and this can be usegbverning incompressible, low Reynolds number Stokes flow

to extract the membrane tensid

Protein diffusion orflat biomembranes has been extensively
studied experimentally in various biological contexts (see, e.qg.,
refs 2 and 36-40). The theoretical approach to this problem has
involved calculating the diffusion constant for a small protein
on alarge flat membrane, and various results already £4isté

These share the feature of alogarithmic correction to the diffusion

constant which, as discussed above, is difficult to test and
somewhat experimentally controversidfor the sake of com-

pleteness, we re-derive this result in the appendix via the theory

outlined below, where we also discuss diffusion on a large

spherical membrane. Throughout the present work we neglect

the effect of flows in any surrounding flug” as we discuss
further in the Conclusion.

In what follows, we aim to calculate the diffusion constant of
a small protein on a long thin cylindrical membrane tube or
tether. Our motivation is twofold: (1) to quantify the rate of

transport of membrane proteins within and between cells and (2)

to analyze a model geometry that may allow for a more rigorous
test of the proposed logarithmic correction to the diffusion

constant. This would be achieved by variation of the tube radius
over several orders of magnitude through the controlled variation

of either the membrane tensien or, equivalently, the axial
“tether” forcefy required to hold the tube at constant leng#¥
which will be discussed further below. The membrane rigidity

Kk is usually assumed to remain constant. Additional contemporary

interest in these problems is reflected in refs 13 and 20, for
example.

Theory

We now proceed to calculate the diffusion constant of a small
protein diffusing on a cell membrane tether or tube, via
consideration of its low Reynolds number hydrodynamtfc&?

We approximate the flow fieldi around a protein by that of a
Stokeslet?53the flow due to a unit point forciat the protein’s
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J. 2005 89, 1482.
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(37) Aizenbud, B. M.; Gershon, N. Biophys. J.1982 38, 287.

(38) Lippincott-Schwartz, J.; Snapp, E.; Kenworthy,Mat. Re.. Mol. Cell
Biol. 2001, 2, 444.

(39) Kucik, D. F.; Elson, E. L.; Sheetz, M. Biophys. J.1999 76, 314.

(40) Sarcina, M.; Tobin, M. J.; Mullineaux, C. W. Biol. Chem2001, 276,
46830.

(41) Saffman, P. GJ. Fluid Mech.1976 73, 593.

(42) Barentin, C.; Ybert, C.; Di Meglio, J. M.; Joanny, J.F Fluid Mech.
1999 397, 331.

(43) Hughes, B. D.; Pailthorpe, B. A.; White, L. R.Fluid Mech.1981, 110,
349.

(44) Bussell, S. J.; Hammer, D. A.; Koch, D.L.Fluid Mech1994 258, 167.

(45) Stone, H. A., Ajdari, AJ. Fluid Mech.1998 369, 151.

(46) Gov, N. S.Phys. Re. E 2006 73, 041918.

(47) A crude criterion for the validity of this assumption would involve
comparing the rate of energy dissipatidnS = ymemfWr)r?h, in a membrane
tube of thicknes$ and radiug with that in the bulk,T S= npu(Wr)?r3, which
is dominated by the membrane for all normal tube radii hjmemd7ouik = Sum.

(48) Sheetz, M. PNat. Re.. Mol. Cell Biol. 2001, 2, 392.

are

—Vp+ ViU +f6%(x) =0

Vu=0 1)
wheren characterizes the membrane viscosity, having units of
viscosity multiplied by length (membrane thickness).

Using the incompressibility constraing/-u = 0, we can
eliminate the pressumXx) (with units of surface pressure) from
eq 1via—V?p+ V-fo3(x) = 0. That s, at each poirt we choose
a p(x) such that fluid incompressibility is satisfied. This leads
to the following solution for the flow field, which possesses the
characteristic and well-known Oseen tensorial struct®n#:

u(x) = — g(égvz — V') [ d*G(x—X)G(X) (2)

In eq 2 we have introduced the useful Green func@gx — x')
which satisfies the relatior V2G(x — x) = d3(x — x).5* In
addition, at the protein’s locatiox,= 0 (no boundary “finite
size” shape effects), we must satisfy the appropriate boundary
conditionu(0) = uo, whereug is the velocity of the protein. In
this short-distance limit, as we approach the protein’s location
(x— 0), we can use the well-known resdlthat —V*V;G(x —

X) ~ 1/25}}‘62(x — X) as k — x) — 0. By utilizing the
aforementioned properties of the Green functéx — x'), and

via careful inspection of eq 2, we can therefore see that all we
require to complete our calculation is tke— 0 limit of G(x).

This allows us to write directly from eq 2, using the well-known
relationf = Cuo,

_keT _
D= =

using the limitx — 0 at the protein’s location. Her® is the
protein’s diffusion constant, anglis its coefficient of friction.
Typically, however, the Green functi@s(x) diverges ax— 0,

so that we need to introduce a “cutoff, in order to give the
protein a finite size. Note, therefore, that this simple result is
valid as long as the size of the protein is small compared with
the size of the membrane, which typically holds under physi-
ological conditions® Given this simplifying limit, and using the
result obtained in eq 3, we can see that, with perfect generality,
we can establish the protein diffusion constant (in whatever
membrane geometry we choose) by investigating the short-
distance properties of the Green functiB(x — x'), as defined
above.

ks T

2 G0 @)
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D= l In( K )
0.2 =g -INl—;
871 \20a”
0.15 ke T
D / um?® st - 4t n(%) (6)
0.1 n L
0.05 Figure 1 shows that, as the surface tensiatecreases, and
therefore the radius of the membrane tettverv/ x/20 increases,
0 the mobility of the diffusing surface protein increases. The total
2 45 4 3.5 -3 -2.5 2 variation of ¢ shown in the figure is on the order of the
log, (o / Jm™ ) physiological range, anith vitro experiments should allow the
Figure 1. Plot of the diffusion constari? (in units ofum? s™2) for exploration of even larger regimes @f Additionally, utilizing

a protein diffusing along the surface of a membrane tether as athe scaling relationship? = 2Dt for one-dimensional diffusion,

fubnct:op of tlhe n(;gn&branedsurfafﬁ tensiofin unlits of J "(sz)- Th% and our previous result for the diffusion constBpive can find
&%%?chggnuisx g ully n(?a%e;hsr%)v?rﬁg?;(rﬂég aristion @ characteristic time for a surface protein to diffuse along a

in D accessible, through changes in membrane tension, is a keyMeémbrane tether of length (in the limit L/r > 1):
predicition of the work presented here.

__ 4wl
Membrane Tubes = K
ke T In( 2)
In a cylindrical geometry corresponding to a tube of length 20@
L and radius, the Green function is givett,in terms of Fourier 2myL2

()

variables, by =

keT |n(@)
1 1 fla
G(AX) = —— z —exp(2tinAZIL + imA¢)  (4)
Lr i g The variation ofr with o follows fromz ~ 1/D. The relation
j = —Dacloz~ DACc/L for the flux on a unit sheet per unit length

whereq = g2 + qg¢, g, = 27n/L, andq, = m/r. The Green per time must be combined with the tube circumference (the
function in eq 4 is given such that the flow fielcdissipates for ~ relevant unit length) to obtain the steady-state flux of proteins
large separation imz while also respecting the necessary Persecond along the surface of a biological tether (in the quasi-
periodicity in A¢. Focusing on the biologically relevant case of equilibrium limit):
long and thin membrane tethers, we can investigate, precisely

as outlined above, the required short-distance IB{ikx)|ax—o0 = kgTAC \/Z K
of eq 4, inthe long-length limit also &f— co. This can be simply 4yl 20 \20a2
achieved by converting the sum oweiinto an integral. Then
using the result of eq 3 from above, we thus obtain the diffusion _ kgTAC \/Z In 27k @8)
constant as 2nL 20 \fa
KeT = 1 where Ac is the protein concentration difference between the
D=— Z — exp(—malr) cosfnalr) ends of the cell membrane tether. In contrast to the transit time
4 f=m 7, the fluxJ depends on a power of In practice, it is therefore
ke T r a relatively insensitive to the logarithmic variation of the particle
=—|In(= e mobility with o.
- [m(a) +0(1) + o(r) + ] ©) y with o

Comparison with Experiment. For a typical membrane tether,

o ) o o o we havec ~ 10719 J3.1214gndg ~ 104 J v 2,3:1214.555ch that
This gives the leading order logarithmic behavior in the lirfat r ~ 20 nm andf, ~ 10 — 100 pN. Typical membrane tether
> 1. In calculating eq 5, we have assumed that the protein shap§engihs might be a few microns, while a typical plasma membrane
(or size) is given implicitly byAz = a andrA¢ = a. Changing has a viscosity off ~ 5 x 107° J nT2 s5657 A typical protein
the shape of the protein merely alters the order unity contribution pasa ~ 5 nm, such that2r/a > 1 is satisfied, validating the
in eq 5, and is therefore a subleading effect in the limit 555r0ximate theoretical approach used in this work, as outlined
r/a>1ofinterestto us here. Heuristically, we can also understand, ahove. Inserting the appropriate values into eq 5, we find
if we so wish, the logarithmic behavior of the diffusion constant p ~ 10-13 2 51 for proteins diffusing on a membrane tether,
with respect to membrane tube radius as arising due to thewhich is experimentally reasonabtel>5%-61 Additionally, by

necessity of introducing a low-wavelength (long-distance) cutoff inserting the appropriate values into eq 7, we find that10-3

into the sum over all modes, as arises in eq 5 for example.  — 18 s forL ~ 10 nm— 10um, respectively. This is consistent
Protein Diffusion on Membrane Tethers.lt is well-known
that, for a membrane tube (or tether) with surface tensiand (55) Morris, C. E.; Homann, W. Membr. Biol. 2001, 179, 79.
. | . ilibri di K K by = (56) Dlmova, R.; .Poullgny, B.;. Dietrich, Biophys. J.200Q 79, 340.
bending modulus, its equilibrium radius is given by = (57) Li, Z.; Anvari, B.; Takashima, M.; Brecht, P.; Torres, J. H.; Brownell,

Vkl26,® and the force required in order to maintain its W-(&?gp&y& |J5'201\(1)2 WE:Z 13;8% Phys. A2004 37, 11989
L s . . . utkin, E.; Newton, P. . yS. A .
equilibrium lengthL is given byf. = 27v/2«0.2 Using these (59) Ellenberg, J.; Siggia, E. D.; Moreira, J. E.; Smith, C. L.; Presley, J. F.;
resultsin eq 5, we obtain the following result for a surface protein WO(gg?rllj, lt4 J.;Fglpgﬁcott-sghgartz, '\]l-tf?z"- %Iolél,%J 51325959739 2317
B A - . H eters, . erry, . groc. Natl. Acad. ScCi. . ), .
diffusing along the length of a membrane tether (in the limit (61) Tserkovnyak, Y.: Nelson, D. Rroc. Natl. Acad. Sci. U.S./2006 103
L/r > 1): 15002.
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with timescales for passive biological transpbit, 4° while size” for typical planar membranes, whereas, in our study, the
transport via “active” motors is also known to exiét> membrane tube radius is (identically) this relevant length.
Furthermore, we can quantitatively calculate the effect of Moreover, we see the main impact of our paper being that it
varying the membrane surface tensi@on the mobility of a provides a tool for testing Saffman and Delbruck’s original
surface protein diffusing along the length of a membrane tether. predictionst rather than simply providing new theoretical results.
Biologically, membrane tethers may be expected with surface  Also note that the next order correction for the diffusion
tensions in the range ef ~ 1072 — 1072 J nT 2314 Thus the constant beyond the leading orderrita logarithmic terms is
highest surface tensions that membranes can support are on thaon-universal, depending on the shape of the protein and, for
order of 102 J m2 and correspond to very small tether radii, example, whether it matches the curved shape of the tube for all
where the approximation> a may be starting to break down. tube radii. We choose to ignore such non-dominant, finite-size
Conversely, we see from Figure 1 that, for the lowest tensions, shape effects in this work, as they add little in the context of our
on the order of 16° J m2, we haveD ~ 107t um?s. While the study and would also probably be of limited general interest.
precise value depends on the size of the diffusing particle (protein) The work was supported by NIH Grant No. HL 58512 from
and the membrane viscosity, we can say that the diffusion the National Heart Lung and Blood Institute.
constants at these extreme tensions differ by an order of magnitude )
(see Figure 1). From a biological perspective, this is a rather Appendix

large effect. Moreover, it follows that a similar order of magnitude  Flat Membranes.Although the result for the diffusion constant
variation also exists for the timetaken for such a partide to of a protein (of sizm) on a flat membrane (of |arge radiEB
diffuse along a membrane tether. is well-known141-46 we briefly reproduce it here (in the limit
. R/a > 1) for the sake of completeness. For the flat membrane
Conclusion case, we find (using a Fourier representation of the Green function
We have calculated the diffusion constant of a small protein for convenience)
diffusing on a cell membrane tether or tube, via consideration 1 dq
of its Stokes flow and low Reynolds number hydrodynam$cg? — = 49 _
An exact form for the protein diffusion constant was found to GlAR)|xxo 27 “/;’ q (%(42) ~ J(aR)
depend logarithmically on the membrane surface tension or the 1
applied axial tether force. In this work, we have used the well- = or In(R/a) 9)
known method of the Stokestét>3in order to model the flow
around a small protein by treating it as arising from a point force such that, by using eq 3, the protein diffusion constant on a flat
at the same location. This approach gives the leading ordermembrane is given by = kgT/4ryy In(R/a). Reassuringly, this
variation of the protein coefficient of friction and is insensitive  result agrees with that found in the literatbi¢fer zero tangential
to the shape of the protein when the protein is small comparedstress), in the same limit of interest, naméta > 1. Using the
to the size of the membrane, as will usually be satisfied under identity R> = 2Dz, valid for one-dimensional diffusion, and our
typical physiological condition¥!#52 result for the diffusion constarid, we can also find the time
Our work is significant in that it suggests and quantifies away taken for a protein to diffuse across a patch of flat membrane
of probing the controversial logarithmic variation of the diffusion  of sizeR: v = 27yR%/kgT In(R/a).
constant with a characteristic membrane size, here identically Membrane Spheres.For completeness, we also consider
the tube radius. Furthermore, our work has biological significance, protein diffusion on spherical biological membranes. The
given the interest in tubular structures within and connections appropriate Green function on a sphere is well-knthfhand
between cells. It is interesting to speculate whether there existsis given by
a regulatory relationship between membrane tension and the .y
exchange of cellular information along long thin membrane tubes G(O,q: 0'.¢") =
or tethers in living cells. _ L _ " g in g’ 4
Note that we do not discuss bulk dissipation in this wotko? 4 In(1 = cosf cost” = sinf sin " cosg = ) (10)
Rather, we study surface friction alone in order to propose a new
test of Saffman and Delbruck’s original theoretical predictibns.
Moreover, bulk dissipation should be small for tube radii smaller
thanre = a #memdMsovens Wherea = 5 nm is the membrane
thickness, and the viscosity ratio is perhapsmg?soiven= 10047

In the short-distance limit, valid for small proteins, we must
haved — 0" ~ (¢ — ¢') sin O ~ alp, wherea is the size of the
protein ang is the radius of the sphere. Using eq 3, we therefore
find that the diffusion coefficient for a small protein on a large

This suggests that bulk dissipation can be neglected for surfacemembrame sphere is given By= ksT/dzy In(p/a), in the limit

) . : pla> 1. Using the identity? = 2D, valid for one-dimensional
the;Z'gns down to 10'N/m, asis appropriate to the work presented diffusion, and our result for the diffusion constdbt we find

Furthermore, we would like to point out that our result has a ';gZiE;nevtiaakZir;fLZrioi p;(r)o:)e; t=0 g?vezr/sk:ralrr:ze/rg)btrgrllsaz?ri:ere of
rather unique quality. To understand this simply, note that Saffman P e p 9

and Delbruck originally introduced a large length scale order ina/p.
logarithmic cutoff length for convenience. There isnoreal “frame LA0635000



