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1. Introduction

Swarming is the collective behaviour of animal aggrega-
tions, and can be observed in the flocking of birds [1–3], fish 
shoaling [4–6], mammal herding [7, 8], and insect swarming 
[9, 10]. Human crowds can also display this sort of collective 
trait [11, 12]. The emergence of global orientational order in 
groups of moving animals is arguably the most striking conse-
quence of this type of social behaviour [10, 13]. In these sys-
tems collective animal behaviour is not thought to arise from 
centralised coordination but rather the system is believed to 
exhibit self-organisation due to the local rules of the inter-
acting elements. This results in coherent motion with local 
rules manifesting global order [14, 15].

In recent years, a large number of theoretical models have 
been developed in which local interaction rules give rise to 
global ordering in animal systems [16–18] however empirical 
studies have been more rare [19, 20]. Testing models against 
data is essential if we are to determine which sorts of model 
give rise to specific characteristics: many models can generate 
some form of swarming, but which of these models give rise 
to swarms that resemble those seen in nature? It has been 
suggested that the specific interaction mechanism may vary 

with species and for some systems an interaction based on 
neighbour distance appears to be a good fit [21]. In contrast, 
recent field studies have reconstructed the internal dynamics 
of large flocks of Starlings and have determined that their 
nearest-neighbour interactions do not depend on interaction 
range [22–24].

Developing models with this metric-free characteristic is 
technically challenging as they typically support a zero den-
sity steady-state, such as described in the work of Ginelli and 
Chaté [25] in which diffusive expansion continues indefi-
nitely. Pearce and Turner [26] describe a model that regulates 
swarm density using a motional bias on surface individuals 
and topological interaction rules, preserving the metric-free 
nature of the model and also generating a steady-state with 
finite spatial extent. This strictly metric-free (SMF) model is 
therefore useful to compare with observations of bird flocks as 
it can produce bounded swarms in open boundary conditions. 
However we will show that, in its simplest form, it yields den-
sity distributions that are rather different to those observed.

In this work, we propose a fully topological (metric-free) 
three-dimensional model which includes a motional bias that 
is tunable throughout the swarm and not just on its surface. 
This bias has a topological character, preserving the fully 
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topological nature of the model. Our aim is to explore the 
regulation of density across flocks of birds. We are motivated 
by findings from a field study [22] that reports a nonhomoge-
neous density variation across flocks of Starlings, specifically 
a higher density at the border of the flock than in the centre. 
This observation is counter to what has been observed in some 
other models of collective behaviour [27]. It is also counter-
intuitive in relation to some theories of animal behaviour, such 
as the selfish herd hypothesis [28] in which the centre of the 
group would be the safest location and all individuals might 
therefore be expected to seek to occupy it. We show that our 
metric-free distributed motional bias model is able to support 
behaviour consistent with these empirical observations.

The model is introduced in section 2. The methods used 
to measure aggregate densities and fit the model to data are 
described in section 3. The resultant model and swarm den-
sity profiles are presented in section 4. Additionally, a biologi-
cally motivated basis for an individual determining their depth 
from within the flock is presented and discussed in section 5. 
Concluding remarks are in section 6.

2. Description of the model

The model we propose begins with the surface bounding 
effect introduced in the SMF model [26] and extends it to act 
on all individuals in the aggregate with strength prescribed by 
a function of the topological depth of the individual within 
the swarm. In contrast to classic models of self-propelled par-
ticles, such as those by Vicsek et al [29], we identify two par-
ticles to be neighbours if they are directly connected to each 
other under a Voronoi tessellation [30, 31]. This is constructed 
for the particle positions at each time step, thus defining inter-
acting neighbours as those in neighbouring Voronoi cells (i.e. 
particles which share an edge in the Delaunay triangulation of 
all particle locations).

We use this tessellation to determine topological depth for 
each of the particles in the dynamic aggregate (flock). We first 
identify a shell, or set, of particles as being those that occupy 
an infinite Voronoi cell. These are denoted as occupying shell 
0 and correspond to particles that are on the convex hull of the 
system [31]. Particles that are connected to these shell 0 parti-
cles via Delaunay edges, but that are not themselves members 
of shell 0, are defined to lie in shell 1. This process is repeated 
iteratively until all particles are assigned a shell number. This 
labelling encodes topological depth as it relates to the shortest 
path length from the border through the graph defined via the 
Delaunay triangulation. A driving term can then be included 
in the equation  of motion that provides a motional bias on 
each particle. The direction of this bias (loosely ‘inwards’ or 
‘outwards’), is derived using the locations of its neighbours 
on the same shell.

The interaction rules governing all N identical particles in 
the system are shown in equations (1)–(3).

rt+1
i = rt

i + v0v̂t
i (1)

vt+1
i = (1 − φn)µ̂

t
i
+ φnη̂

t
i (2)

µt
i
= fi⟨r̂t

ij⟩j∈Si + (1 − fi)ϑ
(
⟨v̂t

j⟩j∈Bi

)
. (3)

They involve the position rt
i  of particle i at discrete time t, 

having direction of motion v̂t
i and constant speed v0, which is 

set equal to unity in what follows. The ‘hat’ symbol ̂  denotes 
a normalised (unit) vector and angled brackets ⟨· · · ⟩ indicate 
an average over the indicated particle subset. The operator 
ϑ( ) performs normalisation via ϑ(w) = w

|w|  and r̂t
ij  denotes 

the unit vector pointing from particle i to particle j at discrete 
time step t. The parameter φn encodes the strength of the 
(vectorial [32]) noise applied to each particle, multiplied by 
a random unit vector obeying ⟨η̂t

i
⟩ = 0 and ⟨η̂t

i
· η̂t′

j
⟩ = δi,jδt,t′. 

The neighbours of particle i are denoted Bi and particles which 
share the same shell number κ(i) as particle i form the set 
Cκ(i). Therefore we denote the set of shell neighbours of i as 
the intersection Si = Bi ∩ Cκ(i). We average over the unit vec-
tors pointing from particle i to members of this set. In addi-
tion, figure 1 shows how shell 0 is defined as the members on 
the convex hull of the system, and also the procedure for iden-
tifying all other shells. Equation (1) represents a simple vecto-
rial particle translation along the current velocity. Equation (2) 
encodes an update rule for the velocity that includes both 
some deterministic driving terms, weight (1 − φn), and some 
stochastic noise, weight φn. Thus φn, the degree of noise, is 
an important control parameter in what follows. Equation (3) 
defines the deterministic driving terms. It is comprised of two 
terms, the first, with weight fi, encodes the motional bias con-
structed from the shell geometry, as described and the second 

Figure 1. Schematic of system topology (shown as a two-dimensional 
sketch for clarity). Particles (circles) are nodes of a Delaunay graph 
obtained via Voronoi tessellation. If a particle i shares any edge 
(coloured or dashed) with particle j, then j is in the set of neighbours 
Bi. Coalignment involves reorientation towards the average orientation 
of these particles ⟨v̂t

j⟩j∈Bi. Voronoi shells are denoted by coloured 
edges; red: 0, blue: 1, green: 2. The set of all particles with same 
shell number κ is Cκ, with the shell index of particle i denoted κ(i). 
If a neighbour to particle i is also on the same shell κ(i) (i.e. shares 
a coloured, not dashed, edge), then it is in set of shell neighbours 
Si = Bi ∩ Cκ(i). The motional bias acts in the direction of the average 
of unit vectors pointing from particle i to each of the shell neighbours 
⟨r̂t

ij⟩j∈Si. An illustrative construction of the bounding term for each 
particle is provided in the supplementary materials. This two-
dimensional construction naturally extends to the three-dimensional 
model discussed in the text.
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term, with weight (1 − fi), provides co-alignment of each par-
ticle with its neighbours.

We denote fi as the ‘bounding function’, which encodes the 
relative strength of the bounding effect on each Voronoi shell. 
Changing this allows us to tune the bounding of the model 
across the aggregation as we wish. If we choose fi to have 
the form of equation (4), where φe is a parameter controlling  
the strength of the border shell effect, then we can recover the 
SMF model of Pearce and Turner [26] in its entirety. If instead 
we choose fi = 0 ∀i  then we recover the unbounded metric-
free model of Ginelli and Chaté [25].

fi =
{

φe rt
i ∈ C0

0 otherwise
. (4)

In our model, which uses topological shell depth, the value 
of fi is the same for all particles in the same shell and can 
therefore be mapped to a lower dimensional parameter set 
fκ(i). We believe that this generalisation of the SMF model 
is natural, allowing us to describe the motional bias, not as a 
specific characteristic for a subset of birds, but as a rule for all 
birds that has a strength that depends on the relative depth of 
an individual in the swarm.

3. Methodology

We are interested in measuring the density variation across 
our simulated swarms. As we wish to compare directly to the 
empirical study of Starling murmurations [22] we seek to com-
pute this in a similar fashion. The type of flocks which were 
studied in [22] were non-columnar and compact, with sharp 
borders, containing on the order of hundreds to thousands of 
birds, and which moved nearly linearly for sufficiently long 
times so as to treat their behaviour as near steady-state. The 
type of density variation we are interested in here is the den-
sity profile across flocks in this steady state, which is observed 
to be higher near the edge and to decrease toward the centre: It 
is not the propagating density waves observed in response to 
specific events, such as turning or shock.

We determine the spatial extent of simulated swarms using 
the α-shape method [22, 33], which allows for the presence 
of concavities within the swarm to the scale of α. To measure 
density, individuals with distance less than δ from the border 
were removed and a new border of the reduced flock was com-
puted. The reduced density was computed using this reduced 
volume and the number of internal birds. This process was 
repeated until the flock was empty (i.e. less than four members 
remaining such that no tetrahedra, and hence no volume, can 
be determined).

Simulated swarms typically have a non-negligible degree 
of concavity (as is also observed in the empirical study), 
therefore allowing for presence of a non-convex border is 
natural. Fixing the convexity scale α is non-trivial as we are 
not dealing with a few observations, but thousands of con-
figurational snapshots per simulation, therefore we cannot do 
this manually (as is described in [34]). Instead we obtain a 
sensible estimate for α by selecting the smallest value pos-
sible that leaves the particle aggregation as a single connected 
component. This fixes the convexity scale throughout. We 

must also make a choice of the flock reduction parameter δ 
as this impacts on our measurement and ability to compare 
with the data. We select a value which on average provides a 
similar number of flock reduction iterations as the field study 
(which is 7).

In order to prevent this choice from impacting our meas-
urements, we scale the reduction so that shell number is 
mapped to the domain [0, 1] with 0 corresponding to the first 
reduction and 1 the final reduced flock. This also allows for a 
much easier comparison with the observational data; we can 
map that data to the same domain and perform cubic splines 
interpolation to allow query of comparison points between 
simulated and empirical data. Additionally, we normalise the 
density data such that the first flock density measurement is 
1, which makes our measurements and comparisons dimen-
sionless, and allows us to look primarily at the density gra-
dient across the aggregation. These transformations allow us 
to compare our simulation data more easily with the empir-
ical data and minimises the impact of possible differences in 
choice of parameters.

Our primary goal is to identify a bounding function fκ that 
can produce simulations with density profiles that provide a 
good fit to the empirical data. There is some freedom in how 
one might parametrise fκ. We choose fκ to be linear in shell 
depth (parametrised via gradient a and intercept b). We allow 
the bounding strength on shell 0 individuals to be a separate 
parameter φe in order to include models in which individuals 
on the edge behave differently from the bulk.

We then use the simultaneous perturbation stochastic 
approximation (SPSA) algorithm [35, 36] for recursive optim-
isation of bounding function parameters (φe, a, b) using gain 
sequences with suggested practical values from [37]. We used 
the mean-squared difference between simulated and empirical 
data, averaged over a specified number of density evaluations, 
as the cost function estimate. Using this method allows for a 
principled stochastic search of the parameter space and can 
be performed in parallel. Fresh simulations were performed 
at each parameter update, due to the presence of hysteresis in 
these types of systems [32, 38].

4. Results

In order to understand how the density across aggregation 
varies for swarms which interact in a metric-free fashion we 
generated simulations of our distributed motional bias strictly 
metric-free (DMBSMF) model, as described above. As we are 
interested in simulating real-world behaviour we choose the 
parameters for the model via stochastic optimisation using 
the previously described method, directly fitting to empirical 
data, obtaining fit parameters of φe = 0.883, a = −0.944, 
b = 0.056. These parameters result in a bounding function fκ 
as displayed in figure  2. This translates to a strong surface 
effect generally pointing toward the centre of the flock, how-
ever the bulk of the flock has an outward motional bias of 
increasing strength as one approaches the centre.

In order to simulate a flock that is comparable to that 
observed in the field study, we note from the motivating 
empirical study [22] that the flock in question contains 1360 
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reconstructed birds. We also note details from a later study 
[24] (SI) for the flock in question: 1571 reconstructed birds 
with a measured polarisation of 0.96 ± 0.03 (i.e. observed 
flocks in high order regime). We therefore chose to simulate 
1500 birds with noise parameter φn = 0.22, yielding a polari-
sation of 0.931 ± 0.003, which is of similar magnitude to the 
observed flock. In each instance, we performed a simulation 
for 20 000 time steps with the first 10 000 steps discarded for 
equilibration of the system. The initial condition is a random 
(isotropic) orientation and a random location, uniformly dis-
tributed within a unit cube, for each individual. We measured 
the density variation across the flock (as described in sec-
tion  3) every 10 time steps after equilibration, resulting in 
1000 measurements per simulation instance, which are then 
time-averaged. We combine the results from five independent 
simulation instances, with final values presented as the mean 
of these quantities and uncertainties corresponding to standard 
errors.

The simulated model matches closely to empirical data 
of Starling flocks, as can be seen in figure 3, and produces 
the observed effect that aggregation density is greater at the 
border and reduces in what appears to be a linear fashion. The 
rate of this decrease is also closely matched. This counter-
intuitive observation appears to require a model with a sur-
prising motional bias: whilst surface birds move toward the 
flock centre, ensuring global cohesion, the rest of the flock 
move toward the border with increasing strength the further 
from it they are, as determined by topological depth. Naturally 
then, the number of birds closer to the border of the flock 
increases and drops off toward the centre due to the strong 
gradient of the bulk bounding function.

Our model shares some similarity with another recently 
proposed flocking model, the ‘hybrid projection’ model [39], 
that drives individuals to move towards features in their visual 
field, specifically the boundaries between light and dark 

regions, where light/dark encodes the absence/presence of a 
neighbour in each direction. This model effectively encour-
ages the movement inwards of individuals near the flock 
border. This is because individuals at the border will experi-
ence featureless outward-directed visual fields, resulting in an 
inward bias. It will also generate a bias outwards from the 
bulk of the flock as there will typically be more features in 
the outward-pointing directions than toward the often opaque 
centre of the flock. It is notable then that the motional bias 
that fits data from real-world flocks is similar to the effective 
motional bias present in visual models of this type.

5. Determining topological depth

A key aspect of our model is the notion of topological depth 
within the flock. Individuals are assigned a shell number based 
on this quantity, encoding a non-metric measure of depth as 
the shortest path length from the individual to a member of 
the convex hull (shell 0). The motional bias experienced by 
this individual is a function of shell number, as shown in 
figure 2. It is therefore important to consider the accessibility 
of this quantity to the individual, from a biological/ sensory 
perspective—how might flock members determine their shell 
number? In this section, we present a model for how this could 

Figure 2. Distribution of motional bias via bounding function fκ 
shown for parameters fit via stochastic optimisation: φe = 0.883, 
a = −0.944, b = 0.056. Example is shown for 11 shells: 0 to 10. 
Blue denotes the surface members, shell 0, whose motional bias 
is determined by φe, and red denotes members in the swarm bulk, 
with scaled shell number 0 < κ ! 1 and motional bias linearly 
parameterised by aκ+ b.

Figure 3. Density variation across aggregation: comparison 
of empirical data (black squares) reproduced from [22] with 
simulation data from DMBSMF model (red crosses) with 
parameters φe = 0.883, a = −0.944, b = 0.056 obtained via 
stochastic optimisation. Simulation data is an average of five time-
averaged independent initialisations. Measurements are normalised 
such that the first flock reduction (= 0) has unit density, and a 
value of 1 corresponds to the final measurement before a fully 
reduced (empty) flock. Linear fits show good agreement with the 
model: flock density is largest on the border and decreases toward 
the centre at a similar rate. Inset: similar comparison of empirical 
data (black squares) with SMF model (red crosses) with parameters 
φe = 0.5, a = b = 0.0, as in [26]. Axis labels as for main figure. 
The large disparity between the SMF model and observations 
highlights the strength of our new DMBSMF model.
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be achieved using the degree of anisotropy in an individuals 
visual field as an indicator of their depth within the flock.

We analyse a simplified model of the system in which the 
density is homogenous, for simplicity. Consider the three-
dimensional flock as a sphere S of radius R centred on the 
origin with particle mass distributed uniformly within this 
sphere. For a point P on or inside the sphere, we can define an 
axis z along the vector from P to the sphere centre at the origin, 
as seen in figure 4. In spherical polar coordinates (r, θ,ϕ) this 
necessarily has ϕ-rotational symmetry about the z axis.

The number of particles N =
∫

S ρ(r) dV  constrains the 
density, here assumed homogenous ρ(r) = ρ. If we transform 
to the frame in which P as the origin, we can write:

N = ρ

∫

S
r̃2 dr̃ dΩ (5)

where r̃  is the radial component of a point in this frame and 
dΩ is the solid angle. Therefore,

dN
dΩ

=
ρL(θ)3

3
:= I(θ) (6)

which is the particle mass per solid angle, where L(θ) is the 
distance from P to the sphere surface. This quantity I(θ) is 
biologically accessible (i.e. can be sensed) via the visual field 
of an individual within the flock and is closely related (via a 
threshold function) to the fraction of sky occluded by indi-
viduals in the θ direction as observed from P.

For an individual at P there are intuitively directions which 
have higher and lower particle mass per solid angle. The 
imprint of the flock on an individuals visual field is greater 
when looking through its centre than in the opposite direction, 
as can be seen in figure 4, panels A & B.

We are interested in the extrema of I(θ) and make use of 
the observation that L(θ) is the radial distance to the flock 
edge, see figure  4, with P as the origin. This has the form 

L(θ) = rp cos θ +
√

R2 − r2
p sin

2 θ . To obtain the extrema of 

I(θ) we differentiate equation (6) which yields:

dI
dθ

= −ρL2rp sin θ

(
1 +

rp cos θ√
R2 − r2

p sin
2 θ

)
= 0. (7)

For non-zero density ρ, there are a number of stationary 
points. First, when rp = 0, from the perspective of an indi-
vidual at the centre of the spherical flock, there is no variation 

in mass density in any direction, and I(θ) = ρR3

3  is independent 
of θ. More significantly, there is a maximum and minimum at 
θ = 0 and π respectively. These correspond to L(0) = R + rp , 
looking along a line from P through the centre of the sphere 
(along +z), and L(π) = R − rp, away from it (along −z). This 
also provides two features identifiable in the visual field of the 

individual at P: Imax = ρ(R+rp)
3

3  and Imin = ρ(R−rp)
3

3 .
To obtain a quantity which captures the asymmetry of any 

individual’s visual field we take the ratio of the values of these 
two features to define the ‘visual anisotropy’ as:

∆I =
Imin

Imax
=

(1 − D)3

(1 + D)3 (8)

where D = rp/R is the relative depth within the flock for an 
individual at P. Note how equation  (6) does not explicitly 
feature ρ and is ‘scale-free’ by nature, being only a function 
of the dimensionless depth D, and is also monotonic on the 
interval D ∈ [0, 1].

This is useful if it can be linked to topological depth. To 
make this connection we now seek a relationship between rel-
ative depth D and topological depth κ. For each time-step for 
our simulated, non-spherical flocks (example configurations 
can be seen in the supplementary material, available online 
at stacks.iop.org/JPhysD/50/494003/mmedia), we deter-
mine the spatial extent of the flock as R = ⟨|ri − rcm|⟩i∈C0 
the mean distance to centre of mass rcm over all particles on 
the convex hull of the point set. Relative depth per individual 
is then determined as Di = |ri − rcm|/R which, on average, 
is one for individuals with zero topological depth. Figure 5 

Figure 4. Schematic of simplified description of system: a cross-
section of a sphere of radius R with homogeneous mass density 
ρ(r) = ρ for |r| ! R and 0 otherwise. We consider the visual 
information available to an individual at point P at a distance rp 
from the centre in different directions encoded by θ. L(θ) is the 
distance from P to the edge of the sphere in the θ direction. The 
system is symmetric under rotation about the axis z defined in the 
direction from P through the centre of the sphere. Areas A and B, 
shaded in blue, denote an example field of view between ±20 deg 
in the negative and positive z direction respectively. In the sub-
figures A/B we plot the position of 1500 flock members relative 
to P, at rp = R/2 from the centre, as Lambert azimuthal equal-
area projections centred on the direction of negative/positive z 
respectively, with the red region denoting bounds of  ±20 deg along 
each axis. Looking along z through the flock, as in B, one can see 
a high density of other flock members, however this is drastically 
reduced when looking in the opposite direction out of the flock, as 
in A. We use this visual anisotropy as the basis for an individual 
inferring its depth from deep within the flock.

J. Phys. D: Appl. Phys. 50 (2017) 494003
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shows relative depth averaged over a thousand configurations 
from five simulations with parameters determined from the 
fit to empirical data, as shown in figure 2, compared with the 
corre sponding topological depth. We observe a linear relation-
ship with relative depth decreasing with increased topological 
depth: when an individual is closer to the centre (|ri − rcm| is 
smaller) it has a higher topological depth and vice versa.

We can finally relate our biologically accessible quantity, 
the visual anisotropy ∆I , to topological depth κ and we show 
this for our model in figure 6, providing a one-to-one map. An 
individual can therefore compare two features (the minimum 
and maximum projected density) from their visual field in 
order to determine their topological depth within the flock, 
and hence understand how they should adjust their motion. 
One could imagine such a relationship might be determined 
heuristically: an intuitive understanding of depth within the 
aggregation from visual observations. When ∆I  is small, the 
ratio between minimum and maximum of particle mass per 
solid angle I(θ) is large, so there is a large distinction between 
the two directions these represent (away from and toward the 
bulk of the flock respectively). When ∆I  is larger the curve 
has less extreme slope and presents distinct values for dif-
ferent topological depths suggesting an individual deep in 
the flock still has capacity to determine its depth. We intend 
to further develop this model, including the role of heteroge-
neity, in future work [40].

6. Conclusion

In conclusion, we have introduced a generalised topological 
model of collective behaviour with a tunable bounding func-
tion to distribute a metric-free motional bias across the swarm. 
This model was fitted to empirical data of Starling murmu-
rations using stochastic optimisation to determine a suitable 
form of bounding function. Simulation data from this model 
was shown to match field study data and produce swarms 
which are more dense at the border than at the centre, which 
is a surprising characteristic of real-world Starling flocks. We 
compared this fitted model to a benchmark topological model 
with no motional bias on the bulk of the flock (only on the 
surface). This allowed us to understand the role of the spe-
cific form of distributed motional bias that we have identified, 
which is to produce the desired level of inter-individual exclu-
sion across the swarm, and allow individuals to keep the nec-
essary relative distance apart without directly enforcing what 
this should be. We also proposed how an individual might 
use the observed anisotropy of its visual field to determine its 
depth within the flock.

Models of swarming generally aim to obtain group cohe-
sion and coalignment [41, 42]. Typically, these are explicitly 
included as rules imposed on the interacting agents in the 
system. Our model differs from current models in the liter-
ature. While it explicitly imposes coalignment in a familiar 
way, swarm cohesion (and density regulation) are controlled 
using a motional bias distributed across the flock, which is 

Figure 5. Relative depth D of an individual within a simulated 
flock compared to its topological depth κ averaged over five runs 
of 1000 time-steps after equilibration with N = 1500, φn = 0.22 
and bounding function as fit to empirical data (figure 2) shown as 
red crosses. Inverse squared-error weighted least squares fit shown 
as dotted black line: D = −0.162κ+ 1.015. Inset: how maximum 
topological depth κmax scales with the number of flock members 
N for the test case of a homogeneous sphere of unit density 
(blue triangles). Fit function (black dashed line) has the form 
ln(κmax) = 0.336 ln(N)− 0.933 which suggests κmax ∼ N1/3 ∼ R, 
as one might expect at fixed density. The dashed green line has 
gradient 1/3, for reference. Thus maximum topological depth grows 
with the size of the flock.

Figure 6. Relationship between visual anisotropy ∆I  and 
topological depth κ. Simulation data (red crosses) is as for figure 5 
and unweighted fit (black dashed line) of form κ = aeb∆I + c is 
provided as a guide-line (a = 0.002, b = 1.005, c = −0.006). The 
functional form is not itself important but is designed to show that 
a simple heuristic relationship could be accessible to animals. Inset: 
analytic relationship between ∆I  and relative depth D as shown in 
equation (8). Data points from figure 5 (main) are transformed by 
this function to obtain the relationship seen in the main figure.
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prescribed via metric-free interaction rules, consistent with 
experimental observations. We show that specific field obser-
vations of density variation in aggregations of Starlings can 
be reproduced using our model so that density is higher on 
the border of the flock than at the centre. This density pro-
file may relate to the predator-evasion mechanisms of three-
dimensional swarms and the evolutionary development of 
such behaviour.
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