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ABSTRACT: We perform large scale three-dimensional molecular dynamics simulations
of unlinked and unknotted ring polymers diffusing through a background gel, here a three-
dimensional cubic lattice. Taking advantage of this architecture, we propose a new method
to unambiguously identify and quantify inter-ring threadings (penetrations) and to relate
these to the dynamics of the ring polymers. We find that both the number and the
persistence time of the threadings increase with the length of the chains, ultimately leading
to a percolating network of inter-ring penetrations. We discuss the implications of these
findings for the possible emergence of a topological jammed state of very long rings.

Understanding the dynamical and rheological properties of
solutions of long polymers is of primary importance in

several areas of soft matter, material science, and biophysics.1

The dynamics of linear polymers in the melt is now understood
using the tube and reptation models.2,3 These models take
advantage of the topological constraint represented by the
noncrossability of the chains to describe the diffusion of the
polymers along their own primitive path, by relaxing the free
ends. By contrast, the dynamics of ring polymers, which have
no free ends, can differ markedly from those of their linear or
branched cousins in the melt,4−14 involving fundamentally
different modes of stress relaxation,9 significantly different
diffusion constants,13,14 and a crossover to free diffusion that
occurs only once they traveled many times their own size
⟨Rg

2⟩1/2.15 Inter-ring penetrations, or “threadings”, have
previously been speculated to play some role in ring
dynamics,9,11,15−19 although no methodology to define or
identify them yet exists. The goal of this work is to study a
system in which we can quantify these threadings and their
effect on the long-time dynamics of a concentrated solution of
ring polymers. At present its not possible to identify such
threadings in the melt. Here we focus our attention on a system
that is rather different from a melt of rings: We study a
concentrated solution of ring polymers embedded in a physical
gel which, for simplicity, we model as a rigid cubic lattice, see
Figure 1a. As we show below, this system is well suited to the
study of inter-ring penetrations (threadings). It is also highly
accessible from an experimental point of view, as it resembles
the classical setup used for gel electrophoresis20,21 of plasmid
DNA rings, except that the polymer concentration is taken
above overlap and the gel is prepared in order to have a pore
size comparable to the polymers’ Kuhn length. In this Letter we
introduce for the first time a quantitative measure of inter-ring
threadings for polymers diffusing in a background gel by using a

novel algorithm that employs the background gel as a reference
frame. We can then study the consequences of this on their
dynamics. We show that the number of threadings grows
linearly with the degree of polymerization M of the chain and
that this leads to the emergence of an extended directed
network of threadings that includes of order all rings. This
network of threadings is associated with the onset of very slow
dynamics and we show that the unthreading process drives the
emergence of a significant slowing down of the longest rings we
are able to study. Finally, we speculate that such a threading-
rich state may be a precursor of a topological jammed state for
even longer chains, as these threadings provide long-lived
“pinning” sites that represent severe topological constraints in
the polymers’ diffusion.
We study unlinked and unknotted ring polymers diffusing

through a background gel (see Figure 1a,b), formed by a
perfect cubic lattice, that is, without dangling ends. The novel
aspect of this work is in how we are able to identify the role of
inter-ring threadings. By neglecting fluctuations of the gel we
can direct computational resources most effectively toward
simulating the dynamics of the rings themselves. We use a
molecular dynamics engine (LAMMPS) to model the Langevin
dynamics at fixed volume and constant temperature of N
polymer rings with length M moving inside a three-dimensional
cubic lattice of total linear size L and lattice spacing l. The ring
monomer density is kept constant for all the systems at ρ =
NM/L3 = 0.1 σ−3 (on top of this, the density of the gel is 0.06
σ−3). The well-established Kremer-Grest model22 is used to
simulate worm-like chains with noncrossability constraint and
excluded volume interaction (see SI for simulation details).
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The Kuhn length provides a natural choice for the lattice
spacing of the gel, l = lK = 10 σ, where σ is the nominal size of a
bead composing the polymers. By making this choice, we
assume that the mesh size of our idealized gel corresponds to
that of a moderately concentrated agarose gel23 or appropriate
DNA hydrogel architecture.24−26 From a physical perspective,
lattice spacings much greater than the Kuhn length can produce
a gel so sparse that the rings rarely encounter it. This maps the
problem back onto the melt, a different system from the one we
study here, and one that is less well suited to the study of inter-
ring penetrations. Alternatively, for lattice spacings much
shorter than the Kuhn length threadings will ultimately be
suppressed by steric effects. Also, the simulation will include an
increasingly large fraction of passive gel monomers, which tend
to increase the volume fraction of the system and hence limit
the concentration of rings that can be studied efficiently using
LAMMPS. The choice of l = lK = 10 σ is a natural compromise
and corresponds to systems that can have numerous threadings,
as we show below. This is due, at least in part, to the fact that
the polymers are forced to spread across many unit cells, and
within each cell the polymers are stiff.
We study threadings as local properties of the conformation

of rings; the global topology of the rings remains unlinked from
both other rings and the gel. Here the gel architecture provides
a natural local volume, a single unit cell, within which threading
of one ring by another can be identified; no corresponding
method exists for the melt. Each polymer enters and exits a
given cell through its faces. The unique topological character-
istic of ring polymers, unlinked from the cubic lattice, is that
each time the contour passes out through a face of any given

unit cell, labeled c, this must be accompanied by a returning
passage back through the same cell face. The threading of
polymer i by polymer j within cell c can then be defined as
follows: First a contraction of ring i is formed by sequentially
connecting the points where it passes through any face of cell c
by straight lines, as illustrated by the dashed (yellow) lines in
Figure 1b. This creates a closed loop (or link) ic contained
entirely within cell c and its bounding faces. In this way we use
the gel to identify threadings as local configurations in which
the conformation of the ring outside of the chosen cell is
unimportant. Next we consider each of the strands, labeled by
jc, of a different polymer j in the same cell c. These strands
connect a single entry and exit point through the faces of c. We
now close the ends of each strand outside the cell to form a
closed loop. We then compute the linking number of the loop
thereby created from each jc with ic. This will be nonzero if, and
only if, ring i is threaded by that strand of ring j. For instance,
the two strands of the green ring in Figure 1b are threading the
yellow ring, since the absolute value of the linking numbers of
each of these (after closure) with the closed yellow loop are
equal to one. We define the local threading of ring i by ring j in
cell c at time t by Thc(i, j; t) = 1/2∑jc|Lk(ic, jc; t)|, equal to 1 for
the example shown in Figure 1b, and the total threadings
between these rings by summing this over all cells

∑ ∑=
| |

i j t
Lk i j t

Th( , ; )
( , ; )

2c j

c c c

c (1)

This procedure is perfectly well-defined, even when rings enter
and leave through the same faces of the cell (see also SI). We
emphasize that this is taken to be a definition of threading. It is
necessarily a strictly local measure, on the scale of the cell
volume. If the cell volume is increased no threadings will
eventually be recorded since rings in the melt are unlinked by
construction.
We assign a passive threading of ring i by ring j when

Thc(i, j; t) = 1 and Thc(j, i; t) = 0 and an active threading when
Thc(i, j; t) = 0 and Thc(j, i; t) = 1. For example, in Figure 1b,
the yellow ring is passively threaded by the green one, which is
actively threading the yellow one.
The equilibrium average ⟨Thc(i, j; t)⟩i,j,t/N ≡ ⟨Th⟩/N is the

number of threadings per chain and is found to scale
extensively with the ring length M. This may be related to
the fact that the number of cells visited by each chain also
grows linearly with M (see Figure 2).
We claim that the existence of these penetrations influences

the dynamics of the rings by pinning chains’ segments. A
measure of this is given by their time-correlation function

=
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where p(i, j; t) = 1 if ring j is penetrating (threading) ring i at
time t and 0 otherwise.
For large ring length M, Pp(t) tends to flatten, resembling a

plateau, before relaxing to a constant value Pp(t → ∞) ⟨p(i, j;
t0)⟩i,j,t0, this being the mean probability that two different,
randomly chosen chains are penetrating. By using a mean-field
argument, the probability of threading between two chains in
any cell that they both occupy pth can be approximated as the
total probability that they thread divided by the number of
shared cells that they both occupy Nsc

Figure 1. (a) Snapshot of a system with N = 50 chains of length M =
256. The gel lattice (gray) can be seen to be interpenetrated by ring
polymers (various colors). We use periodic boundary conditions so
there are no real ends to either the gel or the polymers. (b) Sketch
showing our procedure for identifying rings that thread in a given unit
cell c of the gel lattice. Here the green strands of chain j passing
through a face of the cell (circled) are separately closed to form two
loops jc1 and jc2. Each are topologically linked with the yellow contour
ic, a unique contraction of chain i formed by connecting the points that
pass through the faces of the unit cell (circled). In contrast, the green
ring is not threaded by the yellow. See text for details. (c) Segmental
mean squared displacement of the rings ⟨δrs

2⟩ = ⟨[ri(t) − ri(0)]2⟩
scaled by ⟨Rg

2(M)⟩ and plotted against time in units of the Lennard-
Jones time τLJ = σ (m/ε)1/2, where m is the mass of the beads and the
target temperature is T = ε/kB. The gel structure is here thinned for
clarity.

ACS Macro Letters Letter

dx.doi.org/10.1021/mz500060c | ACS Macro Lett. 2014, 3, 255−259256



= → ∞p P t N( )/th p sc (3)

We combine our measurement of Nsc and Pp(t → ∞) in order
to compute pth, which is plotted in the inset of Figure 2.
We now compare the relaxation of threading with that of the

modulus G(t) for the stress carried by the rings, here computed
as

=
∑ +

∑G t
g i c t g i c t t

g i c t
( )

( , ; ) ( , ; )
( , ; )

c

c i t

0 0

0 , 0 (4)

where g(i, c; t) = 1 if ring i visits cell c at time t and 0 otherwise.
While G(t) is a standard quantity in polymer science the
rheological response of the rings will be “mixed” with that of
the gel. This could lead to possible complications in isolating
the rheological response of the rings alone. We therefore
propose that diffusion of labeled tracer rings may be the most
effective experimental probe of their dynamics. From the inset
of Figure 3a it is clear that the spatial stress relaxes more quickly
than the threadings. This is consistent with the fact that one
ring, penetrated by another in any particular cell, can
independently relax the stress it carries in all other cells. As
reported previously,6,9,15,27 the stress is found to relax faster
than for melts of linear polymers, lacking any glassy plateau.
Long-lived penetrations may be responsible for the fact that the
segmental mean square displacement of a ring only starts to
freely diffuse (⟨δrs

2⟩ ∼ t) after the ring itself has moved many
times Rg, see Figure 1c. This is in contrast to linear polymers,
where there are no penetrations and the same crossover is on
the order of Rg.

15 We infer that free diffusion can only occur
when the most persistent penetrations have relaxed, on the
time-scales shown in Figure 3a.
Figure 3b shows that chain reorientation is fast. For M = 256

it is comparable to the unthreading and diffusive relaxation
times but it is much faster for M ≥ 512. It may be significant
that this is at the same point that significant clusters of
interpenetrated rings start to appear, see Figure 4. These
clusters do little to inhibit intrachain reorganization but the
network of mutual pinning seems to be associated with the
slowing of unthreading and diffusive relaxation. Figure 3b also
shows that the diffusive relaxation time closely follows the
unthreading time, supporting the hypothesis that free diffusion
is possible only once the most persistent threadings are lost. In
addition, we show that for the longest rings the penetrations
relax much more slowly. We associate this with the emergence

of strongly connected components in the network of inter-ring
penetrations, see Figure 4. This is consistent with Figures 2 and
3a, showing that, as we increase the length of the rings at fixed
density, there is a corresponding increase in the number of
threadings which also become more long-lived. In the
percolating, long-lived cluster of interthreading rings that
emerges the motion of each ring is strongly constrained by
its passive threadings.
In order to quantify the network of penetrations, we define a

directed graph =G G( , ), = where = is the set of vertices, a
subset of the set of N rings in the system, and , is the set of
directed edges from ring j to ring i, which represent the
threadings of ring j through ring i. We keep track of the time-
evolution of the network via the matrix Th(i, j; t) and quantify
the emergence of extended structures of interthreading rings by
using the size of the largest strongly connected component
|Nscc| and the first Betti number b1(G) (see SI). As one can
notice from Figure 4, most connected structures for short rings
are formed by only two mutually threading rings while, for
longer rings, these eventually contain N( )6 vertices, signifying
the emergence of a percolating cluster of interpenetrating rings

Figure 2. Number of threadings ⟨Th⟩ per chain as a function of the
length of the chains M. In the inset we plot pth, crudely the probability
of threading in a cell containing two different chains, as computed in
eq 3. See text for details.

Figure 3. (a) Time-correlation function Pp(t) of the penetrations as in
eq 2. The inset compares the relaxation of the stress carried by the
rings, through the modulus G(t), with Pp(t) for the system with
longest rings showing that the spatial stress relaxes more quickly than
the threadings. (b) Compares three dynamic relaxation times, defined
as τrelax ≡ ⟨Rg

2⟩/6DCM, τdiam ≡ ∫ 0
∞Cdiam(t)dt (Cdiam(t) is the time

autocorrelation function of the diameter vector d⃗(t) that joins opposite
beads along the rings’ contour (see SI for details)) and ⟨T0.1⟩, given by
the solution of Pp(T0.1) ≡ 0.1. The arrow on top of the data point
showing τrelax for the longest rings M = 1512 indicates that this
represents a lower bound: the crossover to diffusive motion has not yet
occurred at the longest computationally accessible times. The
unthreading times ⟨T0.1⟩ for M = 256, 512, and 1024 follow the
power law shown and are close to the corresponding values of τrelax.
The shaded region delimits the confidence bounds expected for the
final data point for the unthreading time ⟨T0.1⟩ at M = 1512, were it to
continue to follow this power law. This point is approximately 30
standard deviations outside the confidence interval, consistent with a
dramatic slowing-down due to the development of a strongly
connected network of inter-ring penetrations (threadings).
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which scales with the size of the system. We claim that such
static transition in the structure is related to a correspondent
dynamic transition, whose effect can be observed in the
significant deviation showed in Figure 3b.
In summary, we have employed a new method to quantify

inter-ring threadings and to relate these to their dynamics in a
background gel. Our findings suggest that inter-ring pene-
trations become more important as the length of the rings
increases and that the dynamics of the polymers slows
correspondingly. We highlight the existence of strongly
connected components in the network of interpenetrating
rings and show that such components grow as the length of the
rings is increased with a cluster of size N( )6 interpenetrating
rings emerging for the longest chains we study. Together with
the result that Th(M)/N ∼M we speculate that the dynamics is
likely to be strongly suppressed for even longer rings. The term
topologically jammed state might be used to describe this
highly interpenetrated state of matter, which could have the
unusual property that the dynamics could appear glassy, or at
least slowed, well above the classical glass temperature Tg for
the polymer itself and hence without appreciable loss of
microscopic mobility. As the molecular weight of the ring
polymers increases, the dynamics is expected to dramatically
slow down due to the topology of the polymers, which must
unthread one another in a particular order. This is rather
different to the corresponding dynamics of linear polymers.
This state would also inherit the well-known universality class
of polymer physics and it would therefore seem to offer a novel
framework in which to study a jamming transition from a
topological perspective.
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