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The function of membrane-embedded proteins such as ion channels depends crucially on their
conformation. We demonstrate how conformational changes in asymmetric membrane proteins may be
inferred from measurements of their diffusion. Such proteins cause local deformations in the membrane,
which induce an extra hydrodynamic drag on the protein.Usingmembrane tension to control themagnitude of
the deformations, and hence the drag,measurements of diffusivity canbeused to infer—via an elasticmodel of
the protein—how conformation is changed by tension.Motivated by recent experimental results [Quemeneur
et al., Proc. Natl. Acad. Sci. U.S.A. 111, 5083 (2014)], we focus onKvAP, a voltage-gated potassium channel
from Aeropyrum pernix. The conformation of KvAP is found to change considerably due to tension, with its
“walls,”where the proteinmeets themembrane, undergoing significant angular strains. The torsional stiffness
is determined to be 26.8kBT per radian at room temperature. This has implications for both the structure and
the function of such proteins in the environment of a tension-bearing membrane.
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Recently, Quemeneur et al. [1] measured how the dif-
fusion of KvAP, a voltage-gated potassium channel from
Aeropyrum pernix, was affected by membrane tension.
KvAP is an example of a protein that is found to have an
affinity for curved membranes [2], implying an asymmetric,
truncated cone shape. The protein induces a localized
deformation, or “dimple,” in the membrane, the magnitude
(and extent) of which decreases as the applied tension is
increased. To investigate the effect of shape on dynamics, the
authors of Ref. [1] traced the motion of KvAP at different
membrane tensions and compared the corresponding diffu-
sion constant to the reference, or control, values exhibited by
a cylindrically shaped protein (of equivalent radius), which
can be related to the theory of Saffman and Delbrück [3]. At
high tensions the corrections due to the shape of KvAPwere
very small (∼5%), while at lower tensions the corrections
(∼40%) were much more pronounced.
In order to explain these results, the authors of Ref. [1]

invoked a polaronlike theory [4–6]. This involves adding an
extra term to the Hamiltonian of the membrane, which is
coupled locally to membrane curvature and gives rise to a
dimple consistent with the protein’s shape. An Oseen
approximation is then used to calculate an additional drag,
which arises because a moving dimple must displace the
surrounding viscous fluid. The corresponding reduction to
the diffusion constant is then found by using the Stokes-
Einstein relation. However, the approach neglects (i) the fact
that membranes are themselves incompressible fluids, sat-
isfying a two-dimensional form of the Stokes equation, and
(ii) that the movement of the protein imposes particular
boundary conditions on the membrane flow (and the mem-
brane flow, in turn, imposes conditions on the surrounding
fluid flow). Moreover, the additional drag calculated in
Ref. [1]was found to be too small to explain the experimental

data, leading the authors to explore additional dissipative
mechanisms. Thesewere traced tomembrane shear flows, or
to the assumption that a protein might drag a large island of
immobilized lipids through the membrane. However, the
effects of these modifications were calculated within the
same Oseen approximation, and they cannot be expected to
reliably describe any properties related to membrane flows
for the reasons given: such flowsmust satisfy the equations of
two-dimensional incompressible Stokes flow, and they are
subject to appropriate physical boundary conditions near the
moving object. It is for these reasons that the results of
Saffman andDelbrück do not emerge in the appropriate limit
of zero curvature in Ref. [1].
Here, we instead seek a classical hydrodynamic explan-

ation for the additional drag, and hence the reduced
diffusion, of curvature-inducing proteins. In order to take
account of the geometry of the membrane, we employ a
covariant formulation of low Reynolds number hydro-
dynamics in two dimensions [7–10]. In doing so, we
neglect both membrane fluctuations and any chemical
interactions occurring between the protein and the amphi-
philic molecules that make up the membrane [11,12]. By
treating the membrane hydrodynamics in this way, we find
that no additional dissipative mechanisms are required.
If the shape of the protein is fixed, our calculations

predict an increased hydrodynamic drag at high tensions.
The reason is that the induced dimple in the membrane
becomes localized and sharp, increasing the Gaussian
curvature of the membrane in the vicinity of the protein
and introducing additional hydrodynamic shear stresses
(see, for example, Ref. [9]). Such an effect is not apparent
in the data, which suggests that, for sufficiently high
tensions, the Brownian motion of KvAP should be
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indistinguishable from a cylindrically shaped protein of the
same radius (such as the aquaporin AQP0, used as a control
by Quemeneur et al.). This is evidence that the conforma-
tion, or shape, of the protein is changed by the torque
exerted on the “walls” where it meets the membrane [13].
Combining our hydrodynamic theory with linear elastic
response yields an excellent fit to the data [1] and predicts
the relevant torsional stiffness of KvAP. A flowchart
representing our approach is shown in Fig. 1.
To develop a theory for the hydrodynamics associated

with the motion of KvAP, the induced shape of the
membrane must first be calculated. Taking the midplane
of the bilayer to be a smooth Riemannian manifold S, each
point on S is attributed a Helfrich-like free energy per unit
area [14,15]. The lipids are assumed to remain well ordered
everywhere, and therefore the bilayer has a bending energy
of 2κH2, where κ is a constant andH is the mean curvature.
The spontaneous curvature is zero, while the contribution
from the Gaussian curvature is neglected due to the Gauss-
Bonnet theorem. The membrane is also under lateral
tension σ. In the experiments of Ref. [1], this is controlled
by the pressure difference between the interior and exterior
of a giant unilamellar vesicle. Neglecting fluctuations, the
shape of the membrane at equilibrium is then found by
minimizing the total free energy

E ¼
Z

S
ð2κH2 þ σÞdA; ð1Þ

where dA is used as a shorthand for the volume 2-form,
vol2, associated with S. Using a small angle approximation,
the solution can be characterized by an axisymmetric height
field αhðrÞ, ∀r ∈ ½a;∞Þ, where a is the radius of the
protein and α is the contact angle subtended at the walls of
the protein (see Fig. 2). Up to a constant factor, the
variational procedure yields an order-0 modified Bessel
function of the second kind [see Ref. [16] and the
Supplemental Material (SM) [17]]:

hðrÞ ¼ lK0ðr=lÞ=K1ða=lÞ; ð2Þ

where l ¼
ffiffiffiffiffiffiffiffi
κ=σ

p
is the membrane correlation length.

Notice that increasing the surface tension leads to an
increasingly localized membrane deformation, or dimple
(see Fig. 1 of the SM [17]).
The effect of the induced shape (2) on protein diffusion

may be calculated by first computing the hydrodynamic
drag, λ, on a protein moving with constant velocity, and
then relating this to the diffusion constant via the fluc-
tuation-dissipation theorem [18]. We consider the protein
moving laterally (i.e., perpendicular to the z axis of Fig. 2)
with a velocity whose magnitude V is sufficiently small that
hðrÞ remains a good approximation to the membrane shape
[19] and the hydrodynamics remains at a low Reynolds
number [20]. The force balance condition for this motion is
then F ¼ −λV, where F is the hydrodynamic stress
integrated over the walls of the protein [18] and the sign
signifies that drag forces act opposite to the direction of
motion.
This otherwise straightforward calculation is greatly

complicated by the shape of the membrane, and it requires
the use of differential geometry. For the uninitiated, a
summary of both notation and relevant results is given in
the SM [17]. In brief, at each point on the manifold, the
componentsΠij (i; j ¼ 1; 2) of the rank-(2,0) Cauchy stress

FIG. 1 (color online). Flow diagram. The shape of KvAP induces a local deformation in the membrane, resulting in nonzero Gaussian
curvature in the vicinity of the protein. As tension is applied to the membrane, the deformation becomes more localized, increasing
Gaussian curvature. A covariant formulation of low Reynolds number hydrodynamics demonstrates that Gaussian curvature increases
the drag on the protein, therefore reducing diffusion. As a result, measurements of particle trajectories, such as those in Ref. [1], can be
used alongside a simple elastic model of protein deformation to infer how protein shape is changed by applied tension.

FIG. 2 (color online). Sketch. The embedded membrane protein
KvAP induces a local curvature in an otherwise planar mem-
brane. The midplane of the membrane is characterized by a
cylindrically symmetric height hðrÞ, ∀r ∈ ½a;∞Þ and is further
proportional to the contact angle α, which also serves as the small
parameter in our perturbation theory for the hydrodynamic drag
acting on KvAP.
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tensor are defined with respect to a non-normalized basis ei,
which spans the tangent plane to S at that point. In order to
calculate such stresses, both the hydrostatic pressure p and
components of the fluid velocity field vi are required, i.e.,

Πij ¼ −pgij þ ηðvi;j þ vj;iÞ; ð3Þ

where the constant η is a two-dimensional viscosity and gij

are the components of the inverse metric. Here, a comma
and a semicolon placed before a lower index represent
partial and covariant differentiation, respectively, while
upper indices may be lowered and lower indices raised
by contraction with the metric and its inverse, respectively
(i.e., vi ¼ vjgij and vi;j ¼ vi;kgkj, etc.). If the direction of
motion of the inclusion is assumed (without loss of
generality) to be in the x direction, the net force F becomes

F ¼
Z

∂S
ð î · eiÞΠijdlj ¼ −λV; ð4Þ

where ∂S is the boundary between the surface and the
protein, and dlj is shorthand for the appropriate line
1-form(s). Under steady state conditions, the hydrostatic
pressure and fluid velocity fields satisfy the covariant form
of Stokes’s equation [8–10]:

ηðvi;j;j þ KviÞ − p;i ¼ 0: ð5Þ

Here, the crucial difference from standard (Euclidean)
hydrodynamics is that, if the membrane has a nonzero
Gaussian curvature K, the shear stresses exerted by the
fluid are modified.
In principle, the two equations (5) can be solved, subject

to boundary conditions, when combined with the constraint
of incompressibility, vi;i ¼ 0. In practice, it is often easier
to solve for a scalar stream function ψ by writing

vi ¼ 1ffiffiffiffiffi
jgj

p εijψ ;j; ð6Þ

where εij is a two-dimensional antisymmetric Levi-Civita
symbol and jgj is the determinant of the metric gij.
Consigning the cumbersome derivation to the SM [17],
we present the result in index-free notation using angle
brackets h·; ·i to indicate an inner product taken with
respect to the metric

"
1

2
Δþ K

#
Δψ þ h∇K;∇ψi ¼ 0: ð7Þ

Here, ∇ is the gradient operator, extended to apply on a
smooth manifold, and Δ is the Laplace-Beltrami operator.
Equation (7) is a fourth order partial differential equation
which encapsulates incompressible Stokes flow on a two-
dimensional smooth manifold (surface) in one single

equation. Notice that if the manifold is planar, i.e., the
Gaussian curvature is zero, then the usual biharmonic
equation, Δ2ψ ¼ 0, is recovered.
Unfortunately, for most nontrivial geometries, finding a

closed-form solution to Eq. (7) is problematic. However,
approximate solutions may be constructed by considering
the equation perturbatively. In our case, both the Laplace-
Beltrami operator and the Gaussian curvature may be
expanded as power series in terms of the small angle α.
We further postulate (and later verify) that ψ can be
expanded in the same way, i.e., ψ ¼ ψ ð0Þ þ αψ ð1Þþ
α2ψ ð2Þ þOðα3Þ. Equation (7) can now be solved order
by order, subject to boundary conditions. We impose a no-
slip condition at the interface between the protein and the
membrane, while as r → ∞, we follow Ref. [21] and match
with the leading term, in r, of a different velocity field,
found by solving a Stokes equation that incorporates the
extra drag from the embedding fluid. At both boundaries,
these conditions are satisfied at lowest order, leading to the
following results.
At lowest order, ψ ð0Þ satisfies the biharmonic equation

and the results of Saffman [21] are reproduced by design.
The resulting drag is λð0Þ¼4πη=C, where C¼ logðη=aμÞ−γ,
and γ is Euler’s constant.
At first order, ψ ð1Þ also satisfies the biharmonic equation.

However, applying the boundary conditions gives ψ ð1Þ ¼ 0,
implying that λð1Þ ¼ 0 [22]. This is a natural consequence
of the up or down symmetry of the membrane: corrections
to the drag coefficient λ must be invariant under α → −α.
At second order, ψ ð2Þ satisfies an inhomogeneous bihar-

monic equation. The general solution can be constructed by
combining the solution to the homogeneous equation with
a particular solution that can be calculated via an appro-
priate Green’s function; see the SM [17] for details. The
resulting integrals must be calculated numerically [23]
and there is, therefore, no closed-form solution for λð2Þ.
Nevertheless, our result may still be compared with experi-
ments [1] by invoking the Stokes-Einstein relation

D ¼ Dð0Þ½1 − α2ðλð2Þ=λð0ÞÞ& þOðα3Þ; ð8Þ

where Dð0Þ ¼ kBT=λð0Þ ¼ kBTC=4πη is the diffusion coef-
ficient of a cylindrical protein moving in a planar mem-
brane [21]. Here, λð2Þ depends implicitly on σ through the
shape of the membrane, and hence the metric. Figure 3
shows this result as a function of applied tension (the green
dotted curve). By kind permission of the authors, our
results are shown against the original data from Ref. [1]. We
see that rigid proteins, assumed to have a constant contact
angle α, would experience a reduction in their diffusion
constant at high tensions. The reason is that the dimple
induced in the membrane becomes an increasingly local-
ized region of high Gaussian curvature, resulting in extra
shear stresses in the fluid, and hence extra drag on the
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protein. This indicates that, regardless of the tension, a
completely rigid conical protein (otherwise resembling
KvAP) will never diffuse like a cylindrical one, such
as AQP0.
We therefore propose that the shape of the protein

changes with tension, and we invoke linear torsional
response τ ¼ τr þ kðα − αrÞ. The torque τ exerted on the
walls of the protein can be found from the boundary terms
in the earlier variational analysis,

τ ¼ 2πaσhðaÞα: ð9Þ

The subscript r denotes “reference,” where τr is calculated
by identifying the tension σr at which the green dotted line
of Fig. 3 intersects the data, and then substituting both
σ ¼ σr and α ¼ αr ¼ 0.16 rad (i.e., the angle used in
Ref. [1]) into Eq. (9). The result is a tension-dependent
expression for the angle αðσÞ, which depends on the
torsional stiffness k. Using a least-squares procedure, a
single-parameter fit for k gives excellent agreement with
the data (the solid purple line in Fig. 2) yielding a value of
k ¼ 26.8kBT at room temperature. Reassuringly, this is
entirely consistent with the energies required for voltage
activation [24]. Moreover, we predict non-negligible angu-
lar strains Δα ¼ α0 − αðσÞ, where α0 ¼ limσ→0αðσÞ ¼
0.44 rad; for the range of tensions investigated in
Ref. [1], see Fig. 4.
In the context of our evidence for significant structural

strains at physiological tensions, a reassessment of the

function and structure of membrane proteins under tension
may be required. Our results are especially pertinent since
the highly specialized functions of membrane-embedded
proteins are currently thought to require precise spatial
positioning of at least the key functional residues [25,26].
We therefore welcome further work in this area.
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