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We incorporate a source of noise into a continuum neural field model by allowing the firing threshold to
fluctuate noisily about a mean value, and examine traveling wave front solutions. Under certain conditions we
are able to calculate the first and second moments of the distributions of the resulting time varying front speed
and shape. This is then compared with more complete numerical solutions. Fluctuations in the wave front
speed and in the shape �i.e., fluctuations in activity at particular coordinate positions across the wave front�
were found to increase as the magnitude of the fluctuations in firing threshold increased. The mean speed was
found to increase as the magnitude of the fluctuations increases. The role of the correlation time for the
threshold variation is also investigated. We also study the role of threshold fluctuations in the failure of front
propagation, both in the fast and slow varying noise limits.
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I. INTRODUCTION

A popular approach to modeling large scale neural sys-
tems developed over several years is the so-called continuum
neural field �CNF� model. First developed by authors such as
Amari �1� and Wilson and Cowan �2�, these treat neural tis-
sue not as an array of discrete cells, but as a continuum of
neurons, with each point in space characterized by the aver-
age membrane potential, or “activity” of cells at that point.
Another key idea common to these models is that the action
potential mechanism which facilitates intercellular commu-
nication can be described in a very simple way, where the
rate of production of action potentials of a cell is a simple
function of its activity �the firing rate function�. This is found
experimentally to approximate a nonlinear sigmoid function
as a result of the sum over the different thresholds of many
neurons.

An excellent recent review of CNF models �3� discusses
the many kinds of solutions and highlights their importance
and relevance to real systems. For example, a great deal of
work has been done on stationary and traveling wave fronts
and pulses �4–6�, which are thought to be of importance in
applications such as models of memory �7� and understand-
ing certain pathologies, such as epilepsy �8�.

The aim of this paper is to address the role of “noisy”
variation in the firing rate function. The true mechanism of
action potential generation is complex, and depends on the
opening, closing, and deactivation of several kinds of ion
channel on the neuronal membrane. Such dynamics depends
on factors such as previous stimulus and the presence of
certain chemicals which can vary over long time scales. Thus
the firing is ultimately a stochastic process. Single cells have
been modeled extensively using several methods, for ex-
ample, the stochastic Fitzhugh-Nagumo neurons studied by
Tuckwell and Rodriguez �9�. However, these types of model
are impractical for looking at the large numbers of neurons
present in the systems modeled by CNF theories, so the iden-
tification of an extension to the CNF model, which includes
such ideas, is our motivation here.

The many recovery and feedback processes, which act to
reduce the firing rate of a cell after prolonged stimulation,

have already been successfully included in CNF models in
the form of negative feedback �or recovery�. Here we instead
focus on the role of a “noisy” time varying mechanism for
action potential generation. If one assumes that there is co-
herence between fluctuation in the firing threshold of cells in
the same local environment, then at the continuum level one
would expect to see a firing rate function that fluctuates in
time and space, and that these fluctuations might be corre-
lated at some length scale. It is known that neurons commu-
nicate using local chemical signals although there is no direct
experimental data for the spatial correlation length of the
firing threshold. In what follows we will adopt the simplest
possible approach in which the firing threshold, while fluc-
tuating in value, is assumed to be uniform in the region of
neural tissue of interest. Reassuringly, our results for the ve-
locity variation and shape of the wave front in one dimension
only require that the threshold be correlated on the spatial
scale of the width of the wave front, itself a few times the
typical intercellular connection distance. Thus our model
could be directly applied to the propagation of neural activity
along thin neural “channels” of highly interconnected neu-
rons such as are found in, e.g., the infrapyramidal bundle.
Additionally, we see this model as being informative in the
same spirit as similar, rather crude, approximations for, e.g.,
the homogeneity and isotropy of the function describing spa-
tial connectivity between cells �2�. These models have been
of enduring interest in the literature and have stimulated in-
terest in the role of varying cellular connectivity. Surpris-
ingly, until now, there have been no studies on the role of
temporal fluctuations in the firing threshold.

As a starting point we incorporate a fluctuating firing
threshold into the simplest continuum model with no feed-
back or recovery. Section II describes the standard CNF
model used, while Sec. III details the extension of this to
include noise. Small fluctuations allow a perturbative ap-
proach to be used; the effect on traveling front solutions is
examined first analytically, and then numerically in Sec. IV.
In Sec. V we look at what happens should the threshold
move into a range of values where solutions become un-
stable, and Sec. VI discusses the implications of the findings,
suggesting further work which could include “noisy” firing
functions in more realistic models.
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II. MODEL

Many one-dimensional continuum models �1–3� describe
the activity of cells u�x , t� using the equation

�
�u�x,t�

�t
+ u�x,t� = �

−�

�

w��x − x���f„u�x�,t�…dx�, �1�

where w��x−x��� is the weight function for connections from
cells at position x� to cells at x, and it is assumed that the
activity of cells at x depends on some function f of the ac-
tivity of afferent cells. The constant � is the synaptic re-
sponse time, and gives the characteristic time of a neuron’s
response to an instantaneous input. Other assumptions are
that the connection strength depends only on distance to af-
ferent cells �i.e., the system is homogeneous�, and that propa-
gation times for action potentials are negligible.

Much previous work has involved so-called “Mexican
hat” connection functions �for example, a difference of
Gaussians�, which correspond physically to local excitatory
�positive� connections and long range inhibitory �negative�
connections. These yield several interesting solutions. As in
other work �4–6�, the Heaviside step function is used as a
first approximation to the firing rate function as it allows
some progress to be made analytically. In this and the fol-
lowing sections we use

f�u� = ��u − �� , �2�

w��y�� = �1 −
�y�
2�

�e−�y�/�, �3�

where � is the firing threshold. For convenience w is normal-
ized to unity, 	−�

� w�x�dx=1, and �=�=1 throughout, which
corresponds to a choice of units for time ��� and space ���,
respectively.

The types of solution of interest to us here are primarily
traveling wave fronts. It has been shown �10� that when the
system is arranged so that there are three steady states ū1
� ū2� ū3, there exist traveling front solutions where the
wave connects the stable steady states �i.e., u�−� , t�= ū3 and
u�� , t�= ū1�. By setting �tu�x , t�=0 and u�x , t�= ū in Eq. �1�,
the steady states are solutions of ū=�f�ū�, where �
=	−�

� w�y�dy=1; i.e., ū1=0, ū2=�, and ū3=1. Following �3�,
the shape of this front can be found by changing to coordi-
nates where the front is stationary and using Green’s function
methods to convert the equation to a purely integral form

U�	,t� = �
0

�


�s��
−�

�

w�y�f„U�	 − y + cs,t − s�…dyds ,

�4�

where 	=x−ct with c the speed of the front, y=x−x�, and

�s� the Green’s function for the operator �1+�t� where


�s� = 
e−s, s � 0

0, s � 0.
� �5�

Wave front solutions are those where U�	 , t�=q�	� with

q�	� = �
0

�

ds�
−�

�

dy
�s�w�y�f„q�	 − y + cs�… , �6�

from which an equation for the speed c can be found by
choosing the origin of the coordinates q�0�=�. A plot of the
activity �wave� front with �=0.3 is shown in Fig. 1. As a
function of threshold the speed of the front c is given by

c = �− 1 +
1

2�
, 0 � � � 0.5

1 −
1

2�1 − ��
, 0.5 � � � 1.� �7�

Note the symmetry about the point �=0.5, with c positive
if ��0.5 �an advancing front�, and negative if �0.5 �a
receding front�.

The linear stability can be obtained by expanding
U�	 , t�=q�	�+�u�	�e�t in Eq. �4�. This gives an eigenvalue
equation u=Lu of the form

u�	� = �
0

�


�s��
−�

�

w�y�f�„q�	 − y + cs�…u�	 − y + cs�

�e−�sdyds . �8�

The solution is stable if Re����0 for ��0; the eigenval-
ues �, can be found as in �3,11� using the Evan’s function
method, which gives

���� = �
− 2

1 + 2�
, 0 � � � 0.5

− 2

1 + 2�1 − ��
, 0.5 � � � 1.� �9�

Thus the solution is stable for all � �note, however, the
requirement that 0���1 in order for there to be two steady
states for the wave front to connect�.

FIG. 1. Plot showing wave front activity q as a function of
position 	 �in moving coordinates where the front is stationary�
when �=0.3. The front connects the two stable steady states ū3=1
and ū1=0. In the lab frame �x� the front would be moving to the
right.
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III. FLUCTUATING FIRING FUNCTIONS IN WAVE
FRONT SOLUTIONS

As discussed in Sec. I we seek to study noisy variation of
the firing threshold of individual neurons. At the continuum
level we expect to see a firing rate function which fluctuates
in time and space, and that may be correlated on some length
and time scales.

A major simplification can be made since we are inter-
ested in studying traveling wave fronts. In this case the only
important fluctuations in the threshold are those of neurons
near the “face” of the wave front �a distance only several
times the width � of the connection function�. The velocity
and shape of the wave front is insensitive to the threshold
further from the front. By assuming that the threshold is the
same across the wave front �that it is correlated on this spa-
tial length scale� then we can treat the threshold as varying
uniformly across the entire system.

A threshold, which varies randomly about a mean value,
can be written as

��t� = �̄ + ���t� , �10�

where �̄ is the mean value of ��t� and ���t� is taken to have
the physical analogue of the displacement of a particle sub-
ject to random forces �in a one-dimensional harmonic poten-
tial�. Here we take

���t� = �
0

t

e−�t−t��/�h�t��dt�, �11�

in which � is a characteristic time constant for this variation,
e.g., appearing in the correlation function ����0����t��. The
noise term h�t� is chosen to be a Gaussian random variable
defined by �h�t��=0 and �h�t�h�t���=a��t− t�� �where angular
brackets denote the average over realizations of the system�,
meaning

����t�� = 0, �12�

����0����t�� =
a�

2
e−�t�/�. �13�

The fluctuations are described by two variables: an ampli-
tude a� /2 and a time �. Choosing large � and small a gives
a small slowly varying fluctuation in the firing threshold

about a mean value �̄.

A. Effect on the shape of the wave front

As described in Sec. II for step function f the shape of the
front q�	� can be found explicitly for a particular choice of �.
The system is still translationally invariant, and we now use
the coordinate system where 	=x−c�t�t with the point 	=0
where q=��t�. At any instant in time there is a solution
q(	 ,��t�), however, as the activity is found by integrating
over all previous times the actual shape U�	 , t� will differ
from this. At any instant one can therefore expect a decay
away from the instantaneous shape towards q(	 ,��t�),

�U�	,t�
�t

= �„��t�…�U�	,t� − q„	,��t�…� , �14�

where � is a Lyapunov constant and is also assumed to de-
pend on ��t�. Integrating this gives

U�	,t� = U�	,0�e����t − �
0

t

e−�����t�−t�����q�	,��dt�.

�15�

If it is assumed that ��t� is sufficiently slowly varying with t,
then this simplifies to

U�	,t� � q�	,�� + �U�	,0� − q�	,���e����t. �16�

Writing �u�	 ,��= �U�	 ,0�−q�	 ,���, and inserting this
into Eq. �4� gives an eigenvalue equation �u=L�u, with L
the same operator as in Eq. �8� with eigenvalue ���� as given
in Eq. �9�. The fact that ���� is negative for all � means
U�	 , t� will always decay towards q(	 ,��t�), and the solution
remains stable.

Returning to Eq. �14� and using Eq. �10�, q(	 ,��t�) and

���� can be expanded about �̄ giving

�U�	,t�
�t

= ���̄ + ���t�� ��

��
�

�̄
��U�	,t� − q�̄�	� − ���t�g�	�� ,

�17�

where ��̄=���̄�, q�̄�	�=q�	 , �̄�, and g�	�=��q�	 , �̄�.
Defining �U�	 , t�=U�	 , t�−q�̄�	� allows this to be rewrit-

ten as

��U�	,t�
�t

= ��̄��U�	,t� − ���t�g�	�� , �18�

where it has been assumed that �U and ���t� are small, so
terms in ���t�2 and ���t��U�	 , t� are to be neglected. This
can be integrated and the mean and mean squared variations
calculated. In the long time limit these approach

��U�	,t�� = 0, �19�

��U�	,t�2� =
a�

2

�
�̄

2
g�	�2

��
�̄

2
− 1/�2�

. �20�

Using the definition of �U, and ����t�2�=a� /2, the first
and second moments of U�	 , t� are

�U�	,t�� = q�̄�	� , �21�

��U�	,t� − �U�	,t���2� = ����t�2�
�

�̄

2
g�	�2

��
�̄

2
− 1/�2�

. �22�

Thus, as one might expect, the magnitude of the fluctua-
tions in the shape of the wave are proportional to both the
magnitude of the firing threshold fluctuations, and the rate of
change of q with respect to threshold, which is itself a func-
tion of position.
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B. Effect on the speed of the wave front

In Sec. II the speed of the front c is found as a function of
� by using q�0�=� in Eq. �6�, giving Eq. �7�. With time
varying threshold, by assuming that ���t� is small we can use

q�0�=��t�, and expand ��t�= �̄+���t� in Eq. �7� giving

c�t� = − 1 +
1

2�̄
�1 −

���t�

2�̄
+

3���t�2

8�̄2
−

5���t�3

16�̄3

+
35���t�4

128�̄4 � , �23�

keeping terms up to fourth order. Noting the symmetry about
�=0.5, here �and in the rest of this section� we quote only the
results for the 0���0.5 case for clarity. The mean and
variance of the distribution of speeds can then easily be
found to be

�c�t�� = − 1 +
1

2�̄
�1 +

3����t�2�

8�̄2
+

105����t�2�2

128�̄4 � ,

�24�

��c�t� − �c�t���2� =
����t�2�

8�̄3
+

39����t�2�2

64�̄5
+

1005����t�2�3

512�̄7
.

�25�

For the purposes of comparison with our later numerical
calculations, it is necessary to include terms in powers of
����t�2� up to 2 in the mean and 3 in the variance due to the

high powers of �̄ in the denominator of these terms.
As expected, as the magnitude of the fluctuations �mea-

sured by ����t�2�� increase, so too does the magnitude of the
fluctuations in the speed. An unforeseen result is that the
mean front speed increases with increasing fluctuations in
firing threshold �at least in the small ����t�2� regime�. This
result can be traced to the shape of the c��� curve; as a
convex function �in the interval �0,05�� it follows from Jens-

en’s inequality that �c�����c��̄�, so introducing fluctuations
in � will increase the mean speed.

Note that above we have assumed that there remain two
stable steady states �u=0,1� for the wave front to connect. In
the event that � moves outside the interval �0,1� then one of
the steady states is lost, and the wave front will “die” in
favor of the one remaining steady state. We reserve discus-
sion of such an event until Sec. V.

IV. NUMERICAL SOLUTIONS

In order to test the analytical results of Sec. III and extend
the study into the nonperturbative regime �establishing where
the perturbative results break down�, Eq. �1� was solved nu-
merically with step function f�u�=�(u−��t�). Details of the
numerical approach are given in the Appendix. In this sec-
tion we again look only at the case where the wave front is
stable, and thus constrain the range of values of ����t�2� such
that ��t� remains in the interval �0,1� within the time scales
investigated.

Firstly, the effect of the noise at different mean thresholds
was investigated by examining the statistics of the speed of

the front at different mean threshold �̄ with correlation time
�=20 and ����t�2�=5�10−4 �which is well within the region
where the analytical theory is valid as shown below�. It is
reassuring that the mean and variance of the speed were both
found to agree well with analytical perturbative results for all

0��̄�1, as shown in Fig. 2. Figure 3 shows how the vari-
ance of the fluctuations in the wave front U�	 , t� vary with

position for several mean firing thresholds �̄. These, and

similar results for other �̄, exemplify the excellent agreement
between the analytic perturbation theory and numerical re-
sults for all 	.

The effect of the magnitude of the fluctuations �measured
by ����t�2�� was investigated with a view to identifying the

FIG. 2. Plots showing how the mean threshold �̄ effects �a� the
mean speed �c�, and �b� the variance of the speed ��c− �c��2� �nor-
malized by �c�2�. Solid lines show analytical results from Eqs. �24�
and �25�, and points are numerical results. The other parameters
were here taken to be �=20 and ����t�2�=5�10−4. Error bars in
this and subsequent plots are estimates of the standard deviation in
the mean and variance of distributions, calculated as described in
�12�.
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range in which the perturbative results hold. Figure 4 shows
how the mean wave speed and the variance of that speed
varies with the noise in the firing threshold. In both cases the
perturbative and numerical results show agreement for small
fluctuations, but as expected some discrepancy appears for
larger ����t�2�. The error in the perturbative estimate for �c�,
as presented in Sec. III, is found to exceed 2% for the root
mean squared fluctuation amplitude of ����t�2��0.08. We
also examined the fluctuations in U�	 , t�; see Fig. 5.

Finally, the effect of varying the correlation time for the
noise was investigated; i.e., � was varied at fixed ����t�2� and

�̄. Large correlation times � corresponded to slowly varying
noise, and �→0 corresponds to uncorrelated noise.

Numerical results were obtained with �̄=0.3 and � vary-
ing between 0 and 35, for ����t�2�=5�10−4 and 5�10−3

�the latter corresponding to an amplitude for which the nu-
merical results deviate from the analytical solutions; see Fig.
4�. Figure 6�a� shows the effect of the time constant of the
fluctuations in the firing threshold on the mean speed; when
����t�2� is large the mean speed is approximately constant
for � down to order unity, after which there is a sharp de-
crease, which is where �→�=1 �i.e., the time constant of the
fluctuations approaches that of the system�. In this regime
one might expect that the system can no longer respond qua-
sistatically to the fluctuations and the effects of the fluctua-
tions therefore decrease. The perturbative theory fails, which
makes numerical solutions of the sort presented here essen-
tial to the study of the small � limit. For the small ����t�2�
case again there is a decrease �albeit smaller in magnitude� as
�→�.

For both values of ����t�2� the variance of the speed de-
creases sharply towards zero as �→0 �Fig. 6�b��, again con-
sistent with the idea that the system is no longer quasistati-
cally at “slave” to the fluctuations in the threshold as ���.
The small ����t�2� results show that ��c− �c��2� / �c2� con-
verges to the asymptotic solution �from Eq. �25�� as � gets
large. In the large ����t�2� results �where we do not expect
the perturbation theory to apply� ��c− �c��2� / �c2� seems to

converge to some maximum value which is lower than pre-
dicted by the naive application of Eq. �25�.

V. UNSTABLE WAVE FRONTS

We return now to the question of what happens if ��t�
should move outside the interval �0,1�, destroying one of the
steady states. For example, should ��t� move above one, the
activity u on the left-hand side of the front �see Fig. 1� will
begin to decrease exponentially towards 0. Should ��t� move
back below the now decreasing value of u, the activity will
begin to increase back towards 1 and the front will survive.
The wave front dies when the threshold exceeds the activity,
and continues to exceed it for much of the time that the front

FIG. 3. Plot showing the variance of the fluctuations in U�	 , t�
as a function of 	 for several different �̄. The numerical solutions
�points� fit closely to the analytical lines �from Eq. �21��. The other
parameters were here taken to be �=20 and ����t�2�=5�10−4.
Where error bars are not shown they are smaller than the points.

FIG. 4. Plots showing how the magnitude of the fluctuations in
the firing threshold ����t�2� effects �a� the mean speed, and �b� the
variance of the speed �normalized by �c�2� of the front. The mean

threshold and time constant of the noise were �̄=0.3 and �=20,
with values of ����t�2� between 1�10−6 and 8�10−3, the upper
limit being set by the requirement that ��t� remain between 0 and 1.
Solid lines show analytical results from Eqs. �24� and �25�, and
points are numerical results. In both cases numerical results fit
closely to the lines at small ����t�2�.
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subsequently takes to decay; an example of such an event is
shown in Fig. 7.

It is important to understand that the introduction of noise
in the firing rate function has introduced a mechanism for the
destruction of a wave front that was not previously present.
The dynamics of such wave front decay can be modeled by
considering the activity far from the front on the left, uL, and
on the right, uR. The initial conditions are uL�t=0�=1 and

uR�t=0�=0 and ��t=0�= �̄. The dynamics are governed by

�
duL,R

dt
= − uL,R + �„uL,R − ��t�… . �26�

We investigate this behavior numerically by examining
the time for a front to decay, averaged over many realizations
of the system �see the Appendix for details of the numerical
work�. The mean front life time tl depends on the way in
which the threshold fluctuates. In particular, it depends on
how the correlation time for the fluctuations compares with
the time constant � for wave front decay. It also depends on

the amplitude of the variation and on �̄ �see Figs. 8 and 9�.
If ����t�2� is large, then ��t� will very quickly reach 0 or

1, and is likely to spend long periods of time outside the
stable range of values leading to very short lived fronts. In
the case where � is large compared to � �very slow fluctua-
tions� one could crudely argue that as soon as ��t� moves
outside the stable range of values the front will die before
��t� moves back into the stable range �which is now shrink-
ing at an exponential rate�. The time tl will therefore be
dominated by the time it takes for the front to first become
unstable. Again considering the analogy of ��t� with the po-
sition of a particle in a 1D potential, this time is similar to a

“Kramer’s escape time” �see �13�� so one would expect lin-
ear dependence on �, and approximately exponential depen-
dence on ����t�2�.

Our numerical work shows that the linear dependence of
tl on � remains down to ���, after which tl increases with
decreasing � as shown in Fig. 8. This is because, in this fast
fluctuations regime, the threshold needs to remain mostly
outside the stable interval for the many correlation times � it
takes the front to decay.

Even in the small ����t�2� regime there is still a finite time
in which ��t� will move outside the interval �0, 1�, and as
Fig. 9 shows there appears to be an approximately exponen-
tial dependence of tl on ����t�2� for ��1. However, the dy-
namics are nontrivial as ��t� may cross into and out of the
range of values where the wave front is stable many times
before the front is finally destroyed.

FIG. 5. Plot showing the effect on the variance in U�	 , t� of
����t�2� at several values of 	. Square, triangle, and diamond points
show results for 	=−1.5,−1, and −0.5, respectively, and solid, dot-
ted, and dashed lines show theoretical relationships from Eq. �22�
again for 	=−1.5, −1, and −0.5, respectively. Numerical results
move away from the analytical line at large ����t�2�. Where error
bars are not shown they are smaller than the points. The values of

other parameters are �̄=0.3 and �=20.

FIG. 6. Plots showing the �a� mean and �b� variance �normalized

by �c�2� of the speed c for different values of �, with �̄=0.3. Solid
and dotted lines show the perturbative result for large � �from Eqs.
�24� and �25�� for ����t�2�=5�10−4 and ����t�2�=5�10−3, respec-
tively. The latter is sufficiently large that the numerical solution is
diverging noticeably from the perturbation estimate. The feature
that the perturbative results break down badly for ��5 is clearly
visible.
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VI. CONCLUSIONS

Our numerical work has shown that the results found ana-
lytically in Sec. III hold for small magnitude fluctuations up
to about ����t�2�=2�10−3, and for slowly varying noise
down to about �=5. We have seen that if we increase
����t�2� we obtain the unforeseen result that the mean speed
increases with increasing magnitude of fluctuations, with ap-
parently no maximum, but when ����t�2� becomes large the
average lifetime of a wave front drops off exponentially.

Also the correlation time of the fluctuations in the thresh-
old has little effect on the resulting fluctuations in the speed
and shape of the front, provided it is at least several times

larger than �, the time constant of the system. Also as ex-
pected, the slower the fluctuations the longer the lifetime of
the front.

In the fast fluctuations �small �� limit we find that the
effects on the speed and shape of the wave front reduce as
the system can no longer respond quickly enough to changes
in the threshold. Also �at least in the small ����t�2� regime�
the lifetime of the front begins to increase as �→0. These
regimes are out of reach of our analytic perturbation theory.

There is much scope for further work on this problem. For
example the form of the firing function could be replaced
with a more realistic sigmoid function of the form

f�u� =
1

1 + e−��u−�� , �27�

in which noise could be introduced to both the threshold �,
and the steepness of the curve �. Another more realistic
model would be to allow spatial variation in threshold as
well as fluctuations in time. Also, more detailed models,
which include feedback terms �the so-called “spike fre-
quency adaption” models�, and which exhibit other solutions,
such as traveling pulses, could be examined. Here the effect
of introducing noise on the stability of traveling and station-
ary pulses may have interesting consequences for memory
models. We plan to investigate the effect of noise in similar
two-dimensional models in the future.

APPENDIX: DETAILS OF NUMERICAL WORK

The numerical results of Sec. IV were obtained by solving
Eq. �1� using a fourth-order Runge-Kutta routine �based on
those in �14��. In order to most efficiently evaluate the con-

FIG. 7. Plot showing fluctuating threshold ��t�, and uL and uR

with dynamics as given by Eq. �26�. The front recovers several
times before ultimately being destroyed leaving the single steady

state. Here the fluctuating threshold has ����t�2�=0.09 and �̄=0.7.

FIG. 8. Plot showing the dependence on the fluctuation correla-
tion time � of the mean time to wave front death tl. This is a linear
relationship with tl decreasing with decreasing � down to ���;
below this tl increases with decreasing �. This effect decreases with

increasing ����t�2�. Other parameters are �̄=0.7.

FIG. 9. Plot showing the dependence on the magnitude of
threshold fluctuations of the mean wave front lifetime tl. Other pa-

rameters are �̄=0.7. Square, triangle, and diamond points show re-
sults for �=0.1, 1.0, and 10, respectively. The inset shows log-linear
plots of tl− t0 against ���2�, where t0 is an estimate of the
asymptotic value of tl. An approximately exponential relationship is
seen for ��1 and ���2��0.03.
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volution integrals a Fourier transform was performed and the

product of the functions w̃�k� and f̃�u� calculated before in-
verse Fourier transforming. The transform of w�y� was found
analytical, while those of the step function f�u� and the in-
verse transform were performed using a fast Fourier trans-
form routine �15�.

Spatial and temporal discretization was done with a grid
size �x=0.01 and �t=0.05 in the units where �=�=1, with
all routines being written in FORTRAN 90.

The time varying threshold was generated by solving the
equation

d��

dt
= −

��

�
+ h�t� , �A1�

using a second order stochastic Rung-Kutta routine �see
�16��, with h�t� as detailed in Sec. III.

Values of u�x , t� were calculated over a time of 1000�,
with a system size of L=50� �compared to the �5� width of
the wave front feature�. The position of the midpoint of the
front was recorded as a function of time; this was smoothed
by averaging over 8�t at each time step, and then the deriva-

tive was found. This gives the wave front speed c as a func-
tion of time, from which the mean, second moment, and
variance can be calculated. The u�x , t� data was shifted to the
frame of reference where the front is stationary by using an
interpolation routine �from �14�� to find the point where
u�x , t�=��t� at each time step, and setting this to be 	=0; the
statistics of U�	 , t� at particular 	 could then be examined.

We found in order to investigate small changes in c and u
care was required to ensure that �x and �t were sufficiently
small, in particular, when the magnitude of threshold fluctua-
tions is very small the reliability of results has to be consid-
ered carefully. The statistical error in the mean and variance
of quantities shown on plots were calculated as described in
�12�.

For the results of Sec. V, Eq. �26� is solved also using a
fourth-order Runge-Kutta routine, with the threshold noise
modeled as before. The mean time to front death was found
by averaging over 5000 realizations of the system, and the
error in this �shown on plots as error bars where these are
larger than the points� is calculated from the sample variance
�12�.
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