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Collective motion is found in various animal systems, active sus-
pensions, and robotic or virtual agents. This is often understood
by using high-level models that directly encode selected empirical
features, such as coalignment and cohesion. Can these features
be shown to emerge from an underlying, low-level principle?
We find that they emerge naturally under future state maxi-
mization (FSM). Here, agents perceive a visual representation of
the world around them, such as might be recorded on a sim-
ple retina, and then move to maximize the number of different
visual environments that they expect to be able to access in
the future. Such a control principle may confer evolutionary fit-
ness in an uncertain world by enabling agents to deal with a
wide variety of future scenarios. The collective dynamics that
spontaneously emerge under FSM resemble animal systems in
several qualitative aspects, including cohesion, coalignment, and
collision suppression, none of which are explicitly encoded in
the model. A multilayered neural network trained on simulated
trajectories is shown to represent a heuristic mimicking FSM.
Similar levels of reasoning would seem to be accessible under
animal cognition, demonstrating a possible route to the emer-
gence of collective motion in social animals directly from the
control principle underlying FSM. Such models may also be good
candidates for encoding into possible future realizations of artifi-
cial “intelligent” matter, able to sense light, process information,
and move.

collective motion | intelligent matter | active matter

There have been notable recent advances in our understand-
ing of collective motion motivated by thermodynamics or

physical arguments (1–8) and in animal systems (9–13). While
generalized hydrodynamic theories (6–8) can be obtained for
certain active physical systems, the collective motion of agents
capable of information processing can be far more complex.
For example, existing generalized hydrodynamic theories do not
account for long-ranged interactions, such as those that are
likely to arise in higher animals that rely on vision. Agent-based
models have been developed that incorporate some of these
potential complexities, e.g., distance-dependent attraction, ori-
entation, or repulsions (5, 14, 15) or those relating more directly
to vision (16, 17). While these models have had some success in
explaining animal data, the starting point is usually an essentially
empirical model. This leads to challenges, both in controlling
against overfitting and providing low-level explanatory power:
“Why and how do agents co-align or remain in cohesive groups?”
This question is difficult to answer if the model has coalign-
ment and cohesion hard-wired into it for essentially empirical
reasons.

We instead analyze an agent-based system in which each agent
senses, and then processes, information in the context of a pre-
dictive model of the future. It uses this model to determine its
action in the present, recomputing its model of the future from
scratch at each discrete time step. Each agent decides how to
move, according to a low-level motivational principle that we call
future state maximization (FSM): It seeks control in the sense that
it maximizes the variety of (visual) environments that an agent
could access before some time horizon, τ time steps into the
future. This is a form of control, as it gives the agent many future
options in a potentially uncertain world.

As we report below, FSM spontaneously generates collec-
tive motion of a sort that is similar to that observed in animal
systems—i.e., moving, cohesive, highly aligned swarms that are
stable against small perturbations; Movie S1. While there are
even quantitative similarities with the structure and order in
flocks of birds (9), the motivation for our work is not to mimic a
particular animal system, but rather to analyze a simple, low-level
model that may provide a general conceptual basis for collec-
tive motion, here based on vision. Crucially, our model does not
explicitly include coalignment, cohesion, or any other physical
interaction, merely mutual visual perception between agents in
infinite (2D) space.

There are several reasons why motivational principles like
FSM, that loosely serve to keep options open, may confer fit-
ness, either in artificial intelligence or in nature. FSM increases
the control that an agent has over their future. Agents that
have many options to reposition themselves relative to their
neighbors—e.g., in response to the arrival of a predator—can
likely better avoid or confuse that predator.

In general, strategies like FSM that preserve an agent’s free-
dom to reach many different outcomes in an uncertain world are
expected to enhance fitness.

Similar strategies are known to be successful in games like
chess. Having access to many viable future lines of develop-
ment is generically preferable, given uncertainty about how the
game will actually develop. This confers robustness in defense
and strategic maneuverability in attack. Chess players are famil-
iar with the feeling of their options becoming progressively more
limited as they lose a game, with the converse being strongly
characteristic of winning. One attempt at formalizing this kind
of principle is the “empowerment” framework, which does so by
using the language of information theory (18–20). Our imple-
mentation probably has the most in common with this strand
of the literature. FSM is an example of an intrinsic motivation
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(21, 22), where an incentive for behavior is provided, even in the
absence of any specific tasks to complete or immediate exter-
nal rewards to be gained. Intrinsically motivated behavior has
been studied extensively in the psychology literature (23, 24),
as well as more recently in the field of reinforcement learn-
ing (25–27), where it is used to aid exploration in environments
where rewards are sparse. The key principle is that such behav-
ior should offer a generic and universal benefit to the agent, not
because it is useful for solving any one particular problem, but
because it is beneficial for a wide range of scenarios that the
agent may encounter in the future. A similar idea arises in the
analysis of (hypothetical) causal entropic forces (28, 29). These
forces generate motion that increases an entropy-like measure of
all paths into the future and can lead to behavior with features
usually thought to be characteristic of intelligence, including evi-
dence for the spontaneous emergence of tool use and social
cooperation.

Other work on decision making has some similarities with
FSM (30). In that study, a formalism similar to ref. 28 was used
to model agents making a group-level decision: Agents reach a
consensus on a (single) decision, made in the same sensory con-
text for all agents, without those agents perceiving states (more
than a single step) in the future. No explicit dynamical model
was defined or analyzed in ref. 30. In the present work, FSM is
applied to a group of agents that can move, perceive their own
distinct environments, and build independent models of future
states that are accessible to them, guiding their decision making.
This leads to the emergence of rich collective dynamics of a kind
not previously realized.

Our work can also be seen as motivating the development
of artificial particles that can sense, compute, and move; so-
called “intelligent matter.” This is a natural direction in which
to develop existing active systems—e.g., phoretic colloids (31),
swimming cells (32), or active biological suspensions (33) that
have limited, and rigid, information processing capabilities. Hav-
ing candidate algorithms to encode into this intelligent matter
will help motivate its development. Heuristics that mimic FSM,
as discussed below, may represent a particularly powerful choice
for such algorithms.

FSM Applied to Collective Motion
Methods. We use deterministic computer simulation to study the
motion of agents executing FSM. These agents are unit radius,
phantom (i.e., able to overlap without repulsion), circular disks
that are free to move on an infinite 2D plane. Their speed is
the distance moved in each unit time step, with all lengths mea-
sured in disk radius units. Fig 1A shows the movement options
available to each agent at each time step. These options are
taken relative to its direction of motion in the previous time
step. They are, in order: continue in the same direction with a
choice of three different speeds, v0 (nominal), v0−∆v (slow),
or v0 + ∆v (fast). Alternatively, they are able to turn left or
right by a small angle ∆θ, with speed v0. Unless specified oth-
erwise, in what follows, the nominal speed v0 = 10, the speed
variation ∆v = 2, and the angular rotation ∆θ= 15◦. At each
time step, the agent must choose one of these five actions z ∈
{z1, z2, z3, z4, z5} and does so by executing a form of FSM, as
described below.

Fig 1B shows how each visual state is constructed by using the
positions of the agents.

This visual state is constructed for each agent by geometri-
cally projecting all N − 1 other disks down onto its center. This
involves constructing pairs of lines that each pass through the
focal disk’s center and are tangent to both sides of the other
disks. Each of these lines can be specified by an angle, mea-
sured relative to the agent’s direction of motion. This allows us
to define angular regions in which a line of sight will intersect

z1 z z z z2 3 4 5

A

C

B

Fig. 1. Sketch showing an agent’s movement options, a representation of
the visual state of the world around it, and its future decision tree. (A) The
five actions available to each agent at every time step, given that its previous
move was in the direction of the dashed line, continue in the same direction
at a nominal/slow/fast speed or turn left/right, respectively. (B) A represen-
tative agent (red) sees the other agents (blue) geometrically projected onto
a retina-like sensor array. Each sensor registers 1 if a line of sight through
more than half of its angular region intersects other disk(s), corresponding
to the solid blue regions on the perimeter; 0 otherwise. This ns-dimensional
Boolean vector is the agent’s sensory input and represents its “state.” Here,
we show ns = 20, for clarity. (C) The spatial positions that an agent, shown
as red, can access in the future form nodes on a fan-like tree, color-coded
by the time into the future: pink/red (one step), cyan (two steps), orange
(three steps), magenta (four steps), and green (five steps); in this cartoon,
the maximum future time horizon is therefore τ = 5. The branch of this
tree that the agent explores is contingent on its next move (here shown as
a turn to the left, in red). A similar branch exists for the four other possi-
ble moves, but these are omitted for clarity. The red agent computes the
future sensory states accessible to it at each future node, as described in
B, choosing the move in the next time step that leads to the branch with
the largest number of distinct visual states. The nodes that are highlighted
in dotted red correspond to positions that the agent anticipates will over-
lap (“collide”) with other agents. Here, a single other colliding agent is
shown in blue, for clarity. When computing the number of distinct visual
states, we exclude those from nodes that correspond to, or follow after, such
a collision.

with one or more other disks, shown as solid blue regions on
the perimeter of Fig. 1B. We construct ns discrete visual sensors
that each relate to an angular region of size 2π/ns . The radial
dotted lines in Fig. 1B denote the angular sensors (not the tan-
gent lines). Each sensor registers 1 if more than half occupied by
angles along which a line of sight will intersect other disk(s), i.e.,
the fraction of solid blue; 0 otherwise. Unless stated otherwise,
ns = 40 in all simulations. Fig. 1C shows how each agent con-
structs its future decision tree, given a model for the motion of
all other agents, here simply that they continue on their previous
trajectory at nominal speed vo , as illustrated by the blue agent.
In this way, the agent can compare each of the five moves avail-
able to it based on the absolute number of different visual states
on all nodes accessible from that move. It chooses the move that
maximizes this measure.
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In more mathematical language, we define the visual state
fi ∈{0, 1}ns of an agent on the i th node of its tree of potential
future states, as discussed above. Each of the five available moves
in the next time step leads to branch α of the tree of potential
future states. For each of these five branches, we then construct
a set Sα consisting of all of the unique visual states fi (α) within
that branch. The future time horizon (tree depth) is τ = 4 in our
simulations, unless stated otherwise. Each branch is then given a
weight Wα = |Sα|, and the agent then chooses the current action
zα∗ , such that α∗= argmaxα |Sα|.

Consider a toy example of this process, in which there are only
ns = 4 sensors and two possible actions. Imagine that the branch
α= 1, following action z1, leads to three nodes with visual states
of {1, 0, 1, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, and {1, 0, 1, 0}, while the
branch α= 2, following action z2, leads to four nodes with visual
states of {1, 0, 1, 0}, {1, 0, 0, 0}, {1, 1, 0, 0}, and {1, 0, 1, 1}. In
this example, branch α= 2, and hence action z2, would be cho-
sen because it leads to a future with four distinct Boolean
vectors (states), whereas the branch α= 1 contains only two
distinct states; the vectors {1, 0, 1, 0} and {1, 0, 0, 0} being
repeated.

Some nodes on the decision tree correspond to collisions
and are highlighted in Fig 1B with a dotted red outline. An
agent considers any branch of its decision tree to terminate
on collision—i.e., this and any subsequent nodes are deemed
inaccessible. In this way, the agent tends to avoid collisions
because they contribute no states to its future. We find a strong
reduction of collisions in the FSM trajectories that result, typ-
ically two to three orders of magnitude below a control colli-
sion rate (SI Appendix, Fig. S2). This is despite the fact that
there is no explicit suppression of collisions, e.g., via physical
interactions.

In SI Appendix, we discuss how to generalize this to a
continuous measure of the degeneracy of future visual states.

In ref. 28, a Gibbs measure of the accessible state space, rather
than a count of the number of distinct states, is used to quantify
the future freedom. Our work could be extended in this direction
in the future.

Results
Swarms similar to those shown in Fig. 2A arise from these
FSM dynamics across a broad range of parameter values;
see SI Appendix for a comparison. However, there are some
restrictions—e.g., the number of sensors can neither be too large
(so that all states become unique) nor too small (sensory res-
olution is lost), and the time horizon must be sufficiently long.
For time horizons that are too short (τ < 4 for N = 50), the
swarm becomes less stable, with agents separating from the
main swarm increasingly frequently. In general, the initial con-
ditions must be chosen to be roughly commensurate with the
steady state. If the system is prepared in an initial configuration
from which the agents’ decision trees cannot perceive the steady
state within τ time steps, then the swarm fragments, typically
into cohesive subgroups; see Movie S2 for an example of this
phenomenon with N = 500. Such initial conditions correspond
to widely separated and/or orientationally disordered agents.
Robustness to variation of the initial conditions improves with
increasing τ .

The state shown in Fig 2A and Movie S1 has further qualitative
similarities with animal systems and, in particular, large flocks of
starlings: Its alignment order parameter is within 1% of a typical
value for starling flocks (9), and it is in a state of marginal opac-
ity, in which the fraction of sensors in state 0 to state 1 is order
unity (16) (see SI Appendix, Fig. 2 for more details). Finally, the
correlation length scales with the system size, as shown in Fig
2B. This is indicative of scale-free correlations, another feature
of starling flocks (9), and systems close to criticality more gen-
erally (34). Fig 2C shows snapshots of a larger swarm (N = 500,
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Fig. 2. (A) Structure of collective swarms that emerge under FSM dynam-
ics, as described in Fig. 1A. Shown are snapshots of a typical realization at
two different times showing the trajectories of the agents (light dashed
lines) and center of mass (dark dotted line), with N = 50, ns = 40, v0 = 10,
∆v = 2, and ∆θ= 15◦ and a time-horizon of τ = 4. Wedges show agents’
direction of motion; Movie S1. (B) The center-of-mass frame velocity corre-
lation function for agents is computed for systems with the same parameter
values, except that the data points correspond to N = 50, 75, 100, 150, 200
agents. Shown is the correlation length thereby obtained, here defined as
the distance at which this correlation function crosses zero (nearby agents
are positively correlated; distant ones are negatively correlated). This cor-
relation length is compared against the corresponding swarm size, with
the square root of the area of a convex hull containing all agents. See SI
Appendix for details.

τ = 5), sequentially in time, with motion determined by FSM on
the continuous measure of visual state degeneracy described in
SI Appendix. While for smaller swarms, the two approaches gave
virtually identical results (compare Movies S1 and S3), for larger
swarms, the continuous measure had more variety in its steady-
state collective dynamics and was more robust to fragmentation
(contrast Movies S2 and S4).

It is perhaps somewhat counterintuitive that such a highly
ordered state emerges, given that FSM can be interpreted as
preferring highly varied (roughly, high entropy) distributions of
states. This is because FSM is insensitive to the variety/disorder
of the swarm in the present. It is from such a highly ordered state
that the swarm can access the greatest variety of states in the
future. Thus, it targets this state and remains there. The state
is cohesive because nearby agents then have the most freedom
to rearrange their relative positions, Marginal opacity is selected
because most configurations have sensor states roughly evenly
split between 0 and 1.

Changing the Heuristic Used to Model Hypothetical Future Trajecto-
ries. A key ingredient of the FSM model is an assumption for
how the other agents will move in the future. Without such an
assumption, their future positions remain undetermined, and
the corresponding visual projections cannot therefore be com-
puted. Fig 1C shows the simplest of four different assumptions,
or heuristics, that we report in this work: All other agents [only
a single (blue) one is shown] are assumed to continue on bal-
listic trajectories, without turning, at speed vo . The structure
of the cohesive, coaligned swarms that spontaneously emerge
under this assumption are shown in Fig 2A (see also Movie S1).
The ballistic-motion assumption is an approximate model for
the motion of the other agents and is not strictly self-consistent,
insofar as all agents are identical and actually move accord-
ing to FSM. Hence, the (other) agents won’t move in exactly
such a ballistic fashion, as can be seen from the individual tra-
jectories in Fig 2A. Nonetheless, this assumption is quite good
for the highly ordered (coaligned) swarms that do emerge from
FSM. All agents would indeed continue moving in exactly the
same direction under perfect coalignment. The alignment order
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parameter is here defined as φ= 〈 1
N

∑N
i v̂i(t)〉 with the average

performed over time and v̂i(t) a unit vector in the direction of
motion of the i th agent at time step t . The swarm in Fig 2A has
order φ' 0.98.

Other heuristics can be made self-consistent with FSM. Exam-
ples include: 1) Agents are assumed to collectively target a
particular value of order. At each time step, every agent, in ran-
dom order, turns in either direction if this brings the collective
order closer to the target order φA, otherwise continuing at speed
vo . 2) Agents are assumed to move at speed vo , according to a
topological version of the Vicsek model (5), in which coaligning
neighbors are those that share edges under a Delaunay trian-
gulation. As usual, this model involves a variable noise η, with
a one-to-one relationship between this and the average order
parameter at that noise φB (η). Fig 4 shows that both of these

heuristics can be made self-consistent with FSM at the level of
the order realized: The FSM trajectories that are generated, by
using these heuristics as a model for the motion of all (other)
agents, then have the same order as is generated by the bare
heuristic, a value that was not known a priori. Any evolutionary
pressure to adopt FSM-like dynamics should, presumably, also
favor the ability to self-consistently predict the behavior of other
members of the group in this way.

Training a Neural Network to Mimic the FSM Algorithm. While the
full FSM algorithm is computationally demanding, an artificial
neural network could serve as an example of a heuristic that
can closely mimic FSM and fitness benefits arising therefrom.
Crucially, once trained, it is computationally simple and fast.
Similar levels of reasoning could be expected to operate under

Fig. 3. Snapshots of a swarm made up of N = 500 agents with τ = 5, shown at different times in a frame comoving with the swarm’s center of mass. A
shows the initial state of the swarm, and then B–D show snapshots of its subsequent evolution (in chronological order). In this example, we use a continuous
measure of visual degeneracy (see SI Appendix for details). The full simulation is shown in Movie S4.
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Fig. 4. Convergence of heuristics A (order targeting; blue) and B [topolog-
ical Vicsek (5); red] to a value of the order parameter that is self-consistent
with the value realized by FSM in each case. An initial (iteration 0) order
parameter for the heuristic (φA and φB, respectively) is chosen. This parame-
terizes the model of all (other) agents to be used when constructing their
trajectories into the future to apply FSM on each agent’s predicted future
visual states. The average order realized by the FSM simulation then serves
as the order parameter for the heuristic in the next iteration, and the pro-
cess is repeated. The order converges, both from above and below, to an
average order parameter that is the same, both for the heuristic and the
motion generated by FSM using that heuristic to model the behavior of
other agents. FSM under heuristic A is unstable for values of φA . 0.9, lead-
ing to flock fragmentation into (ordered) subgroups. Parameter values are
as given in Fig. 2. See also Movie S5.

animal cognition. We do not claim that an artificial neural net-
work would be a direct model for (wet) neural networks, even
though the former field was indeed motivated by the latter. We
only argue that reasoning with this level of complexity could
be encoded in an animal brain. This heuristic, like the others
described above, could also be used as a model for the behavior
of other agents during FSM.

We trained a multilayered neural network on the simulated
trajectories that arise under FSM over 200,000 time steps, as
sketched in Fig 5. We gather training data by running the
full FSM algorithm using nominal parameters (N = 50, τ = 4,
ns = 40, ∆θ= 15◦, v0 = 10, and ∆v = 2). Future visual states
are computed under the assumption that other agents will move
ballistically in their future trajectories, i.e., at speed v0 in their
current direction of motion. We generated 800 separate simu-
lations, each with agents initially placed randomly in a square
region with dimensions that vary between 80 and 160 disk radii.
Each agent’s initial orientation was chosen randomly from a
Gaussian distribution with mean orientation along the nominal
x -direction and a SD of 2∆θ. We chose these different initial
conditions to provide representative examples of trajectories that
recover from perturbations. This allowed the trained network
to make decisions that mimic FSM in situations that vary from
the steady state, improving its robustness. In each of the sim-
ulations, we recorded the current speed and the current and
previous visual state of every agent at every time step, along with
the actual decision made by the FSM algorithm in that situation
(represented as an integer between 1 and 5). Note that includ-
ing memory, via the previous visual state, is found to be crucial
to train a network which qualitatively reproduces the behavior
of the full FSM algorithm. The training process is a supervised
learning problem in which we have 10 million labeled example
decisions, each corresponding to a vector input of dimension 81
(2ns + 1, for the speed) with each output an integer between
1 and 5.

The neural network architecture we used consisted of a hidden
layer of 200 fully connected neurons connected to the input with
three further fully connected hidden layers of sizes 100; 50; and
25 respectively. The last of these was connected to a softmax clas-
sifier which output an integer between 1 and 5, corresponding to
the selected action. All of the hidden layers used the RelU acti-
vation function. We trained the neural network on all of the data
for 500 epochs using the ADAM optimizer under Keras with an
initial learning rate of 0.0001.

The output from our artificial neural network was seen to
closely mimic the FSM trajectories; Movie S6.

In summary, we propose a form of intrinsically motivated
collective motion based on FSM. This involves a minimal

Fig. 5. Training a neural network as a heuristic approximating FSM. (A) Sketch of the network architecture. The network takes as its input the agent’s
current speed and the state of each sensor in both the current and previous time steps, represented as light and dark blue squares on each sensor (left-hand
side). This is then passed through four hidden layers of neurons of sizes 200; 100; 50; and 25, which have RelU activation functions. These are attached to a
softmax classifier which outputs an integer between 1 and 5, identifying the next move (final output; right-hand side). The network was trained to mimic
FSM trajectories using 10 million examples (data from 200,000 simulation time steps). (B) The output dynamics from this network is seen to closely mimic
the FSM trajectories shown in Fig. 2; Movie S6.
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representation of vision in which agents seek to increase their
control of the visual world around them. Specifically, they target
being able to reach the greatest variety of future environments.
The potential fitness benefits of this lie in the fact that it gives
the agent freedom to access different outcomes in an uncertain
world. Cohesive, ordered swarms that resemble natural animal
systems spontaneously emerge under FSM. This behavior can be
encoded in heuristics, mimicking full FSM. A neural network
is an example of the kind of heuristic that could mimic FSM
under animal cognition, providing a possible route for the evo-

lutionary selection of this behavior. Such heuristics could also lie
within the processing power of future realizations of “intelligent”
materials that may incorporate sensors, as well as the ability
to move.
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